
The following are notes taken while watching a demo given by Takasi Yamamiya on his

“Skeleton” etoy based constraint system.

October 9, 2003

Takasi Yamamiya
“Skeleton” -- First test with constraint system

A “play by play” on how he made his demos

Making the Skull

This is normal text. He takes regular text out of the supplies bin. He makes the text
larger. He changes the point size to 36, then, using the green duplicate handle, he makes
three or four copies and puts each text morph under the other. He now has three pieces of

text in a vertical line.

Modifying Ned’s “connectors” he takes lines and connects the lines into the rotation

center of each piece of text. This is the basic form. Now they act like springs.
(The default line length is 100.)

Yamamiya created a “goals” flap that contains a “hardness” slider. Another thing you
can change is the length of the line via the yellow handle.

Now he paints a skull. He attributes his “watercolor” style to his drawing teacher. He
keeps the painting/skull and makes it smaller. He changes the center of rotation to the
mouth area, and then uses “connect to relative point” to the top of the skull, so that when

he rotates the skull, it “cranks” the connector lines so they can now act as springs.

He changes the heading increasing it by 10, and sets the clock ticking. Line “hardness”

can be adjusted. Lines can be made shorter by adjusting with the yellow handle.

Difference between regular line and “weak” line.

Skeleton kicking soccer ball
Set hardness slider to zero to enable changes
Select a weak line. A “normal line” remembers its own length. You can’t calculate the
length. A weak line you can’t set the length, but you can measure it. So in this script, we

subtract the line length by 400 then the normal line moves.
(Line – on ball is “normal” – line used to manipulate is “weak”.

Using connectors – choose “attachment point adjuster” He puts a star inside the adjuster

and deletes all but one “adjustment point”. He removes star from the adjuster and
attaches the weak line to the star at the adjustment point. He uses the star to manipulate
the skeleton. Using the “be locked” menu item he locked the new star. He then grabs a

“stars heading” tile and increases it by 5. Now the star rotates.
When you attach a line to another sketch
If you have a dot of paint using the “center” as the attachment point is better, for irregular

shapes it’s best to use the point you want – pick any point on the irregular shape. If you
click the end of the weak line, you receive the menu – go to “end” on that menu and then
“connect to relative point”.

The Ellipse
The top script is straightforward. Keeping the sum of the two lengths the same.

Script 2 “fudge factor” uses “setRotationCenterFrom” 390@310 He rotates the point,
and resets the center of rotation. The center of rotation (blue dot) should beset more or
less to the center of the ellipse. The 390@310 script resets it each time. The blue dot

is not creating the lines, but is part of the connector. He sets the pen down to true, but it
writes a center point. This is why he chose to have the end of the connector to draw the
point.

Script 1 was created to ‘smooth’ the movement of the dot along the ellipse. You have to
look at the line end constraint in order to see where the drawing is being done. He added

the feature of using translucency to extend the 8 bit color range to 32 bit color. High
translucency hides the “jaggies”. Hasn’t found other uses for this yet.

Software as Art
To make a “fuzzball” – take a point, attach a normal line, make it’s heading random. Set
it forward by “n”. Go to pen use, pen color, pen size, select translucent, speed it up to 25

ticks per second and let it go – wait until it makes a “good one”.

Midpoint lines

Make a Constraint
The midpoint is the average of the two coordinates. (Normal Etoy). He couldn’t
synchronize using the regular Etoy system so he designed a new status. It’s a new event
that tells everyone to compute. By using the brown “move” handle he changes the

position of the morph – this causes the update. Instead of updating right away, it updates
at the next step. By defining the update at the “next step” you can avoid infinite loops.

Creating a quadralateral with midpoints

Duplicate points by using siblings and make multiples. By changing point headings they

all change. He wants to be able to control all the midpoints with one script and so he’s
used the make siblings feature. When you’ve finished making the copies, go to the
viewer and see the scripts and variables – red and blue. Clicking on a point gives

indicators. He goes to each midpoint and hooks up a red dot and a blue dot. Now they
all “know each other”. Use the brown handle to move the dots. Now he has enough dots
and they are all connected. Now he adds “weak lines”. He duplicates many weak lines

and connects them to the dots. Sequence is of no importance. Lines can be locked to
facilitate.

Bidirectional constraint
By clicking on the brown “move” handle, you can move the points.
This will allow to move midpoints to “solve” outside.

Select one dot, get its viewer. Go to basic, select “player” tile. (Yamamiya created). Set
blue’s player – red’s player.

Geometry Theorem – a simple example with three colored dots
Blue, green, red
Green is called “point”.

He has made a textual script designating other points in the instance variable field
point’s red and point’s blue (as variables)
Red point has variables - Red’s point and red’s blue

Blue point also has similar variables so each dot has a reference to the other two
Mouse down for a few seconds for cross hair to disappear.
Yamamiya has created new events called “changed” and “updating”.

Set each of the script’s clocks to “changed”.
Select the brown move handle to move all the dots.

