
I think that in Smalltalk a
 Haskell Arrow
 is just a 1 input valuable plus some composition methods

 like

>>into: = return a function composition ,
 (f into: g) = [:x | g value: (f value: x)]

>>pair: = return a do both functions and return a size 2 Array ,
 (f pair: g) = [:x | Array with:(f value: x)with:(g value: x)]

>>binOp: = return a binary op on Array ,
 (p binOp: b) = [:array | b value:(p value:(array first))
 value:(p value:(array second))]

>>doAt1 = return a do function on p's Array at:1 and return Array ,
 (p doAt1) = [:array | array at:1put:(p value: (array first)) ; yourself]

>>doAt2 = return a do function on Array at:2 and return Array ,
 (p doAt2) = [:array | array
 at:2put:(p value: (array second)) ;
 yourself]<---------------[is faster]
 (p doAt2) = (p swap into: doAt1) swap <---------[it's shorter it's simpler]

>>swap = return a do p and return Array transposed
 (p swap) = [:x | (p value: x) reverse]

etc (a 1 input valuable is anything that responds to #value:)

Haskell seems to get a lot of mileage out of this
 kind of Category theoretical
 function composition
and no doubt the Haskell type system aids in this
 and practically Maybe demands it
 and makes it really convoluted
 they rebelled against lispy simplicity
 in order to make it simple in order to not to scare the newbies
 they dumped all the parens overboard
 replaced them all with a complicated set of precedent rules
 so now you got to have a parser in your head
 to read the stuff
 and if you don't where you gonna get one
 is that guy going to parse it for you i don't think so
 which far from making it easier
 for anybody but a rank newbie a ranking newbie got to impressem
 this induced parserhead requirement on human
 Haskell code readers
 instead of making it any easier makes it really really hard out on the deep end
 of the pool there is a tremendous drop off a under water cliff
 where newbies who reach puberty begin hanging thenselves out to dry

 which doesn't really work cause they keep getting all wet
 and this may well be a great resistance to
 Haskell uptake
 and seems to be an endless source of
 confusion contusion and discussion as meetup people's
 personal Haskell brain pan parsers shift in and out
 of true conformity to the standard
 as we speak as we keep on speaking
 and
 No wait-
 s abound
 but the people who got a Haskell parser in they head
 they say oh no I'm not going through That again
 No you get a parser in your head
 or you're out
but i regress -digress!
 The Smalltalk runtime type system makes it a lot
 simpler to see what is going on
 so i wonder
 what effect this kind of function composition
 style could have on Smalltalk code
Where maybe you have a bunch of Methods
 that just return 1 input valuables
 ([:x | ...] , SomeFunctionClass>>value: , etc)
 which then get turned into Arrows
 and get categorically indubitably functionally composed
who knows what could happen

the Objects themselves in this functional Smalltalk style could be
 mostly empty except for accessors
and then stateless Traits
 could be the functions
or there could be separate stateless functional Classes
 that have the stateless functions
 which could be pluggable
 on multiple different applicable Object Classes
 (kind of a pluggable multiple inheritance thing going on)(?)
because
 supposedly
 then
 you can make new functions
 by just using
 very simplified
 composition expressions
 as in the short example above (p doAt2) = ^(p swap into: doAt1) swap
 as opposed to having to know a lot about
 all the inputs and all about how the sends are supposed to fit together
 involving lots of looking things up over and over
 the composition combinators do all that
 for you
 or so the combinator propaganda goes

but is it really true
 or do you have to know just as much
 or more to actually get the
 function combinators to work
 or do you have to finally wise up
 and get smart
 and stop fooling around with writing yet
 another monad
 tutorial(s) just like all the other ranking newbies and get serious
 and write a brain pan parser compiler
 and become a first class tenderfoot
 And now you're much worse off
 than before
 in the time spent column
 and you don't even know it
 that's the sad part
 because the Maybe she's elegance column is calling sirens calling
 clouding your mind with foggy fogged up window pain desires
 and you don't even know which end is up anymore
 and you want some of that categorical shit
 they're having at the big people's table

so is it worth it
does it work as advertised
 or is it just to be deride
i wonder

But i would like it if a
 Smalltalk Arrow
 could explain itself
So an Arrow is just an Object that contains a 1 input valuable
 and a BinaryArrow isA Arrow and contains 2 Arrows
 so Arrow>>explainYourself
 returns
 an Array tree of oneInputValuable source code Strings
 which describe how
 the Arrow works because otherwise it's just a great big mystery
 Arrow
 hasA oneInputValuable <---[a one input function]
 BinaryArrow isA Arrow
 hasA firstArrow
 secondArrow

But the
 BlockClosure>>into: >>pair: >>binOp: >>at1Do >>at2Do >>swap etc
 and

 the
 Object>>into: >>pair: >>binOp: >>at1Do >>at2Do >>swap etc
work too
maybe quicker
 or
 (anArrow asValuable) <---[which gets rid of all the explanation bits]
 <---[couldn't the Smalltalk compiler optimize this
 functional as it sits]

Haskell is very big on Immutablility
 But in Smalltalk exscpecially in the GUI making everything immutable
 just doesn't seem right
 because you've got all these Objects which are sitting in this web
 and they are taking inputs from god knows everywhere
 and broadcasting them back out again
 so you have the idea of a web of important Objects
 with not so important contents which are coming and going
 and recording them all all that and saving them all
 for posterity just don't seem right
 dependent Objects that are interested can note the changes

In Smalltalk when i want an immutable copy of an
 (Object o) where o might be changing i just get
 (o copy) or (o deepCopy) to take a snapshot of o
 but then you have to keep track of when to take a snapshot
 it's true

But Smalltalk can have a
 Immutable Class
 maybe a subClass of ProtoObject?
 to make mixins Object Class complete?
 where an (Immutable m) is on another (Object o)
 Immutable
 hasA object <---[object = o]
 and m forwards all Messages to o after
 making a copy of itself m and o and returning the copy of itself m unless
 ((o aMessage) ~= o) in which case
 ((o aMessage) asImmutable) is returned
then you don't have to keep track of when to copy m
 but there could be any amount of copying
 going on
 so hopefully it's not too much

Maybe Object>>immutableCopy might be good which
 could be called if it is defined? Maybe not Probably not

so hopefully the programmer can tell when
 copy is Immutable enough and

 when an Immutable wrapper is ok good

