The Squeak Foreign Function Interface and its implementation demystified

By Nicolas Cellier

This is an attempt to document the Squeak FFIl both from the point of view of usage, and the
point of view of implementation. It is thus a reference document rather than just a user
manual with recipes for solving most common problems.

This document will identify some of the limitations, and propose some improvements. It is
thus not a definitive and ultimate reference, but rather a snapshot of the Squeak FFI at this
time of writing. It should be a guide for making the Squeak FFI evolve toward a more
powerful, well understood and safe implementation.

Note: this document applies to the modernized FFI plugin a.k.a. the ThreadedFFIPlugin.

About the author

I’m an engineer working in the domain of signal and control theory. | have designed or
participated to the design of autopilots for all sort of vehicles on the surface of water,
underwater, in the air or in space. | have also always worked on the design of tools
dedicated to such activity. That’s where Smalltalk come into play.

I’ve been intrigued by Smalltalk language after reading a byte magazine at the end of my
student cursus in 1987, and had the chance to start using Smalltalk for my first job in 1988,
with Smalltalk-V then with Parcplace Smalltalk-80 V2, Objectworks then Visualworks. With
this active technology intelligence, and the opportunities given by french company
Aerospatiale (one main component of today’s EADS), two engineers could prototype in one
year what would become the main tool for control design in Aerospatiale-EADS for the next
15 years. Of course, more work was necessary to transform the prototype into a product,
and even more to continuously improve the product. But that remarkable achievement is
due in large part to the efficiency of Smalltalk for rapid design.

| have joined the naval industry at end of 2003, and since, | rarely use Smalltalk
professionally. But | have found the way to continue Smalltalking by regularly contributing to
the Squeak project, both by improving the libraries, and the virtual machine.

During these years of engineering, it’s always been vital to leverage the existing and
standard libraries. An example of such lever is Smallapack, a library for interfacing Smalltalk
to Lapack — the famous package for matrix algebra. Smallapack is a rewrite of some of the
tools | had developed for Aerospatiale. A more recent example is an attempt to interface
HDF5, a format and a library often used in aerospace industry for exchanging large
structured data. This bring us back to FFI.

| have adopted and strongly support Squeak, but it’s not always been easy to use Squeak FFlI,
because there are a few dark corners and not much documentation available. This bring us
back to this document, sorry for the long digressions.

An overview of Squeak FFI

A Smalltalk world is composed of objects achieving some task by sending messages to other
objects. In response to those messages, objects execute generally small list of instructions

gathered in a method. But what if we want to execute instructions which are already written
in a foreign language? Squeak provides two main alternatives:

- Add an extension to the virtual machine that wrap this function call into a new
primitive. Unfortunately, those primitives are kind of static: we have to stop Squeak,
compile the plugin, restart Squeak, add the code for invoking the primitive, and
eventually retry. Not exactly the lively experience of Smalltalk.

- Dynamically link an external library and call a function in that library directly from
within Squeak, without interrupting. This sounds more appealing: that’s FFI.

As introduction, here is a quick overview of the main class composing Squeak FFI. Since we
want to call an external function that resides in an external library, it’s not unsurprising to
find an ExternalLibrary and ExternalLibraryFunction classes reflecting those two fundamental
entities.

An ExternalLibrary is a proxy to an entity known to the OS (identified via a handle). Its main
role is to dynamically load the library (typically via dlopen() or LoadLibraryEx() function calls),
and to find external functions by their name or number, and return an appropriate handle
known to the OS for calling the function.

An ExternalLibraryFunction holds the handle known to the OS for calling the function, and
also hold the specification of the function interface:

- What calling conventions are used
- What is the return type of the function
- What parameters the function take, and which is the type of those parameters

It is neither a surprise to find an ExternalType class for reflecting those types.

Once the interface established, the purpose of FFi is to exchange values with the external
function, passed via those parameters or returned back by the function. But in Smalltalk, we
mostly handle Objects, not directly values — except for very simple objects which mostly
carry a value, like Integer, Boolean, Character or Float. It is thus necessary to model
specialized objects that reflects the external values, that is the ExternalStructure,
ExternalUnion, ExternalData and ExternalAddress classes. ExternalStructure and
ExternalUnion are a reflexion of C data of type struct and union, ExternalAddress a reflexion
of pointers to a memory area outside Smalltalk memory. ExternalData is more mysterious,
the name is not specific at all. We will have to come back to it later.

We have shortly introduced all the classes composing the FFI-Kernel category. Those classes
are the face of FFl visible at image side. There is also the invisible face hidden in the VM, the
FFI plugin. We will see it in the more advanced details of implementation.

Specifying the external function interface

Since Smalltalk is messages all the way down, an external function will integrate seamlessly
in the Smalltalk world if it can be invoked in response to an ordinary message. That’s exactly
what FFI provides: instead of instructions written in Smalltalk, a FFI method has a hook for
interfacing to the external function.

The syntax for this hook looks a bit like the one used for linking a primitive: method in the
VM: its uses a form of the so called pragma syntax — or better named annotation syntax.

Those annotation syntax take the form of a sequence of literals laid out in a pair of enclosing
angle brackets < >.

Like for primitives, the regular Smalltalk instructions that are following the pragma will be
executed as fallback if ever the execution of foreign function failed. Else, if the external
function call succeeds, control is returned directly without executing those Smalltalk
instructions.

There are several reasons why the call may fail, like the library or function was not found, or
that a mismatch has been found between the type specified in the interface and the actual
arguments, or the specified type is not consistent.

Pragma or annotations works with keyword, a lot like the keyword message model. For FFl,
the possible keywords are the following:

- First one is calling convention cdecl: or apicall:
- optionally followed by module: specification
- optionally followed by error: specification

A simple example without parameter looks like this:

Return type Parameters type Variable name

containing error code
Calling conventions Function name '—'(b(;a':[\/ narlne (Optional)
. ptional)
pid /
<

<cdec| Iong getpld () module: '||bc error: code> #— Specification of External Function interface

self error: 'getpid() call failed with code ', code.\

N_ .
1) [~ The variable name
containing error code
is used in fallback code

Ordinary Smalltalk method
selector and arguments

Smalltalk fallback code to execute if external function call fails

Regular pragmas or annotations have a single literal parameter per keyword. However, this
is not the case for FFl, which was created before the generalization of annotations. As we
can see, 3 literals follow the calling convention keyword:

- areturn type
- the name of the function (or eventually number in Windows DLL)
- alist of function parameter types (one per argument of the Smalltalk message)

The other two optional keywords module: and error: get a single parameter, the module
name (a String) and the name of a temporary variable (word or String) that will contain the
error code upon return in case of failure. Note that the variable must not be declared in
temporaries bar | |, this is automatic, otherwise the Parser will signal an error.

Note that the receiver plays no role in the external call, only arguments of the message are
passed to the external function, not the receiver. FFl methods are sort of utility methods.
There are two main schools for the choice of class implementing the method:

- anywhere related to the utility (here pid could be implemented in Smalltalkimage so
that we can write Smalltalk pid and get the pid of the Smalltalk process).
- Inaclass reifying the library.

In the last case, the moduleName can be factored out as a class side message. This can be
convenient if we want to support multiple platforms/os and if the name of library is platform
specific.

Specifying the external library

Specifying the library directly in the function interface

As we saw in the example of previous chapter, the name of library can be specified directly
in the External function interface specification. That’s the simplest but not unique solution.

Specifying the library at class side

What if we omit this module name? Then

The list of possible FFI errors
The list of errors can be found in FFIConstants class>>initializeErrorConstants. Following
table give an image of that method.

Beware: the error code returned when the external call fails is the FFl code below
plus an offset, so that both regular primitive error code and FFI specific error code
can be distinguished. See ExternalFunction class>>externalCallFailedWith:

Table 1 The list of Squeak FFI Errors

FFl name FFI Notes
code
FFINoCalloutAvailable -1 No callout mechanism available — OBSOLETE ?
FFIErrorGenericError 0 A call to an external function failed — may happen for
whatever reason a primitive may fail
FFIErrorNotFunction 1 The first literal of a FFI method is not an
ExternalLibraryFunction
FFIErrorBadArgs 2 The ExternalLibraryFunction is malformed (does not

have expected flags, argTypes not corresponding to
num parameters + 1, ...)

FFIErrorBadArg 3 Attempt to pass an argument of wrong class to a
pointer or to a structure type

FFIErrorintAsPointer 4 Attempt to pass an Integer value (or Character or
Float) to a pointer type

FFIErrorBadAtomicType 5 The specification of an atomicType is not valid

FFIErrorCoercionFailed 6 The coercion of argument to integer value or pointer
value failed

FFIErrorWrongType 7 The type specified has unconsistencies.

FFIErrorStructSize 8 Attempt to pass an ExternalStructure value which has
not the same size as the type specification

FFIErrorCallType 9 Unsupported calling convention

FFIErrorBadReturn 10 Attempt to return a structure/union but no

corresponding ExternalStructure class was found at
image side

FFIErrorBadAddress 11 The handle of the ExternalLibraryFunction is not a
specification of valid address

FFIErrorNoModule 12 No module was given for loading external function
address

FFIErrorAddressNotFound 13 The external function was not found in specified
module

FFIErrorAttemptToPassVoid | 14 Attempt to pass a void value. It’s possible to pass void
*, or return void (nothing), but not to pass void!

FFIErrorModuleNotFound 15 The module specified was not found

FFIErrorBadExternalLibrary 16 The handle of the ExternalLibrary is not a
specification of valid address

FFIErrorBadExternalFunction | 17 The ExternalLibraryFunction name is not a ByteArray
or ByteString

FFIErrorinvalidPointer 18 The ExternalAddress point to some Smalltalk
memory, which is forbidden (objects in Smalltalk
memory can be relocated leading to dangling
pointers)

FFIErrorCallFrameTooBig 19 The function requires more than 16k bytes to pass
arguments

Specifying the types

Simple atomic types

FFI has support for passing signed and unsigned integer of different size and also floating-
point types (single or double precision). Atomic types are specified with a simple word
known to FFl, each corresponding to a C type. Those types are initialized in

ExternalType class>>initializeAtomicTypes.

Table 2 The atomic types supported by Squeak FFI

FFl name C type Notes

void void For specifying void pointers or absence of returned value
bool uint8_t For passing Smalltalk Boolean

byte uint8_t For passing Smalltalk Integer (or ByteArray if pointer)

sbyte int8_t “

ushort uintl6_t For passing Smalltalk Integer (or DoubleByteArray if pointer)
short intle_t “

ulong uint32_t For passing Smalltalk Integer (or WordArray if pointer)

long int32_t “

ulonglong | uint64_t For passing Smalltalk Integer (or DoubleWordArray if pointer)
longlong int64_t “

char unsigned char | For passing Smalltalk Byte Character (or ByteString if pointer)
schar signed char “

float float Single precision float

double double Double precision float

Beware, in this table the FFl word ‘long’ does not correspond to C type long. It did so at the
era of 32 bits, and was less ambiguous than ‘int” at the time when some platforms did have a
16 bits int (DOS being an example). But at the era of 64 bits, the C type long is rather int64_t
for LP64 platforms (though still int32_t in LLP64 platforms — mostly windows64).

We can also notice several different 8 bits integer. That is because C type char does not
really distinguish if the type represents a boolean, a character code, or an integer. In
Smalltalk, Boolean, Character and Integer are separated classes with different behavior.
Historically, FFI has duplicated the C type, one for converting Smalltalk Character, one for
converting byte Integer. But nowadays, no such distinction is made for atomic values.

The type ‘bool’ is declared as being 1 byte long at image side, but is converted to (4 bytes)
int in the plugin. That’s a mismatch that can be troubling, but has no real consequence,
because both are passed the same way in all supported platforms ABI.

What Smalltalk object can be passed to a parameter of atomic integer type? All the objects
in the following table can, with or without restriction.

Table 3 value taken into account for atomic integer type

Smalltalk class Value retained | Restrictions

UndefinedObject 0 None

False 0 None

True 1 None

Character charCode None

Smalllnteger value None

LargePositivelnteger value Value must be < (1<<32) on 32 bits VM for

target type up to int32_t

Value must be < (1<<64) on 64 bits VM for
target type up to int32_t

Value must be < (1<<64) for uint64_t
Value must be < (1<<63) for int64_t

LargeNegativelnteger | value Value must be >= -(1<<31) on 32 bits VM for
target type up to int32_t

Value must be >= -(1<<63) on 64 bits VM for
target type up to int32_t

Value must be >= -(1<<63) for int64_t

What must be understood is that no bound check is performed on Character nor
Smalllnteger values. According to the C type, and up to 32 bits, the retained value is
truncated to 1, 2 or 4 bytes before being passed to the external function (like a C conversion
with overflows, it is equivalent to a modulo operation).

For example when passing a wide Character (i.e. Character euro) to a signed or
unsigned char, a modulo will be applied to the charCode, and the external call won’t
fail. Character euro charCode = 16r20AC, thus 16AC is passed to an unsigned char,
or -16r54 to a signed char.

However, bound checks are performed on Largelnteger values. For int64_t and uint64_t, it is
mandatory that the Largelnteger value fits on target type, otherwise the primitive fails.

For types up to 32 bits, the Largelnteger value may overflow, but not more than would fit on
machine Word size (4 bytes on 32 bits VM, 8 bytes on 64 bits VM).

It may seem odd that passing (1<<64-1) to a parameter expecting an int32_t would
not fail on a 64 bits VM, but passing the same value to a parameter expecting an
int64_t would fail! But this is not a description of how things should be, just how
they currently are.

For floating point type, the same integer values can be passed, but without the specific
int64_t and uint64_t rules, they will be converted to single precision float, or double.

Squeak Float (which are IEEE 754 double) will also be passed unchanged to double, or cast to
single precision if target is single precision float. This later conversion may imply rounding or
overflow to +/- infinity.

Table 4 value taken into account for atomic float type

Smalltalk class Value retained | Restrictions

UndefinedObject 0 None

False 0 None

True 1 None

Character charCode None

Smalllnteger value None

LargePositivelnteger value Value must be < (1<<32) on 32 bits VM for

target type up to int32_t
Value must be < (1<<64) on 64 bits VM for
target type up to int32_t

LargeNegativelnteger | value Value must be >= -(1<<31) on 32 bits VM for
target type up to int32_t
Value must be >= -(1<<63) on 64 bits VM for
target type up to int32_t

Float Value None

Composite types

For passing one of the C composite types (struct or union), it is necessary to first create an
ExternalStructure or ExternalUnion subclass which will serve as proxy to the value of
corresponding C type.

The argument must then be an instance of the subclass of ExternalStructure or

ExternalUnion, and the type specification used in FFl external function interface must be the
name of that subclass.

It is then possible to instantiate the ExternalStructure subclass in Smalltalk memory and pass
that object to the external function call. It is also possible to have such external function
returning a new instance of the the ExternalStructure subclass when the external function
returns a struct by value.

EXAMPLE PLEASE
WHAT ABOUT STRUCT ALIGNMENT?

The type aliases

Other C types, enum, bitfields

In C, enum are just specific int types. Thus enum are treated like alias to int type.
EXAMPLE WANTED

There is no support for bitfield in struct. Bit fields must be replaced by integer of appropriate
length, and it is user responsibility to decompose the bits of the integer field using available
bit operation in Squeak (bitAt: bitShift: bitOr: bitAnd: allMask: anyMask: etc...).

Pointers: passing values by reference

So far, we only considered values. On important feature of C is the ability to pass a reference
to a value (a pointer the memory where the value is located). The purpose is

- Either to avoid a costly copy on stack frame for big objects
- Orto have the value modified by the external function

In modern C, it’s possible to declare a pointer to a constant, read from right to left: type
const *. If we would have the information that the intent is read-only, then it would be
possible to automatically convert a value, copy it in a container of expected C type and call
the external function with address of container. But in Squeak FFI, we have no mean to
distinguish those usages. It is thus mandatory to pass an instance of the following classes:

- An ExternalAddress pointing to some external heap;

- A ByteArray of appropriate length that may act as the container;
- An ExternalStructure corresponding to the type specification;

- An ExternalData corresponding to the type specification.

Note that the ExternalStructure and ExternalData both have a handle that may point to an
ExternalAddress or to a ByteArray. The last two cases enable type checking while the first
two completely bypass the type checks.

Opague handles

In a number of libraries, some struct never need to be allocated in Smalltalk memory, and
their contents is never accessed directly: because the struct will be allocated by some
specialized external function, returned by address, and passed to other specialized function.
Much like a Smalltalk object, the internal states of such opaque struct are hidden and we
operate on it only via function call, like we would operate on a Smalltalk object only by
sending messages. In this case, it’s best to not detail the layout of the struct, but just pass a
void * pointer.

The most proper way to represent such opaque handle is to create an aliased type, either to
avoid *, or to an integer of sufficient length for holding a pointer (an intptr_t, but we do not
have such type support in FFl), or just an empty stucture.

fields

At(nil 'void*')

fields
ASmalltalk wordSize = 4

ifTrue: [#(nil 'ulong') "an opaque 32bit handle"]

ifFalse: [#(nil 'ulonglong') "an opaque 64bit handle"]

fields
N ()

Beware, though, in the latter case, having this aliased type as struct member may lead to
ambiguous encoding of type specification (compiledSpec) — we’ll see why in dedicated

chapter.

Passing Smalltalk objects to the external function

Implementation details of type checking

The types are encoded in so called compiledSpec. A compiledSpec is a WordArray, that is an

array of 32bits unsigned words.

Each 32bits word is a basic type specification, in which the least two significant bytes encode
the size of the data in bytes, the next byte holds some flags for interpreting the type and the

most significant byte encodes the atomic type (if any).

Table 5 a basic type specification word

[31 [20 [29 [28 [27 [26 [25 |24

23 [22 [21 [20 [19 [18 [17 [16

1514 [13 J12 [11 [10 |9 8

p l6 s [4 [3]2 J1 fo]

J

L

3

Unused

Note that if the pointer bit is set, then the size specified in least two bytes is that of a pointer

4 bits specifying jused
the atomic type atomic struct

pointer

J

sizeof(void *), that is 4 in 32 bits VM, 8 in 64 bits VM.

Table 6 The interpretation of the 3 atomic-pointer-struct bits

I

16 bits specifying byte size of the type

How to decode the atomic-point-struct type flags

Unused - illegal

A structure (defined by value)

A pointer to a structure or other unspecified type (void *)

A pointer to struct — possible but currently unused

An atomic type (passed by value)

Unused - illegal

A pointer to an atomic type

PR, PR, OlOC|lOC|O| >
PR R, O|lOC|RFR|FL|OC O| D
R O|lFrR,r|O|Fr,| O|lFL, | O|WL

Unused - illegal

The bits specifying the atomic type in the most significant byte, are set if and only if the kind
of type is atomic. Note that the encoding can be found in
ExternalType class>>initializeAtomicTypes

Table 7 The encoding of atomic types supported by Squeak FFI

27 | 26 | 25 | 24 | FFl name C type Notes

00 |0 |0 |void void For specifying void pointers
0|0 |0 |1 |bool uint8_t For passing Smalltalk Boolean
0 |0 |1 |0 |byte uint8_t For passing Smalltalk Integer
0 |0 |1 |1 |shyte int8_t “

O [1 |0 |O |ushort uintl6_t “

0 (1 |0 |1 |short intle_t “

0|1 |1 |0 |ulong uint32_t “

0|1 (1 |1 |long int32_t “

1|10 |0 |0 |ulonglong | uint64_t “

1|0 |0 |1 |longlong int64_t “

1 /0|1 |0 |char unsigned char | For passing Smalltalk Byte Character
1]/0 |1 |1 |schar signed char “

1|1 |0 |0 |float float Single precision float

1|1 |0 |1 |double double Double precision float
11110 UNUSED

171 (1|1 UNUSED

Note that bits 25 to 27 colored in blue are equal to the byteSize for the atomic integer types
(codes 2 to 9), while bit 24 specify the signedness. This bit trick is not used in the
implementation. However, it suggests that we could have even more compact
representation if necessary.

Simple types like atomic types or pointers to atomic types have a compiledSpec made of a
single word as described above. For example, ExternalType double compiledSpec will be a
WordArray with: 16rOD040008, which we decode as atomic type=16r0D=2r1101=double,
flags=16r04=atomic, sizeof=16r0008 bytes.

Composite types like struct and union have a more elaborate compiledSpec. The first word
describes the structure or union as a whole (that is the byteSize holds the whole size of the
struct including padding and alignment bytes). The last word is a stop word, which marks the
end of the struct description. This stop word is necessary in order to support nested
structures (struct whose field is another struct). Between those first and last word, the type
of each field is described with a single word if atomic, or several words if composite — ending
with the stop word.

The stop word is encoded with a single struct bit set to 1, all other set to zero (that is 65536
or 16r00010000).

If we take a simple struct {double d; int i;}; the struct is 8 for d+4 for i+4 for alignment
padding, that is 16 bytes. The first word of compiled spec is thus 16r00010010.

The next two words are the double type spec 16r0D040008, and the int32_t type spec
16r07040004. The last word is the stop word 16r00010000.

What about pointers to struct

For a pointer to struct, we could expect to have both struct+pointer flags set. That’s not the
case. The basic type specification has just pointer, and is thus equivalent to void *
16r00020004 or 16r00020008 on 32 and 64bits VM respectively.

What about aliased types

An aliased atomic type has the same basic type specification as the target atomic type. For
example, is Size_t is an alias to uint32_t (on a 32 bits VM), then its compiledSpec will be that
of uint32_t, 16r06040004. However, the pointer to a Size_t will be defined as that of a
struct, void *, and that probably qualify as a bug. It will not crash, but void * will bypass type
checking which is not a good thing.

Proposal for future enhancement:

We can see that we have unused bits in this spec. It's good to have some for being future
proof. But we also see that some information is redundant: the size of atomic type could be
encoded in the encoded type. Hence, we could just keep 3 bits for the atomic type:

- 000=void

- 001=bool

- 010=unsigned integer

- 0l11=signed integer

- 100=unsigned char

- 101=signed char

- 110=floating point

- 111 reserved

Also there is a flag for struct but none for union. It is necessary to distinguish struct from
union in SysV x86_64 ABI when testing if the composite value can be passed via stack or
registers.

The kind of registers of SysV x86_64 ABI could also be cached in some of the unused bits.

Those compiledSpec are accessible to the FFI Plugin thru following object graph: the first
literal of a FFl method is an instance of ExternallibraryFunction. This object points to the
argTypes (the first of which being the function return type). Each argType is an instance of
ExternalType. Each external type point to a compiledSpec and a referentClass. The

referentClass is either nil, or a subclass of ExternalStructure if the type is that of an existing
structure. The compiledSpec and referentClass are the essential information which serve the
control of parameter marshalling.

CompiledMethod

- literall —» ExternalLibraryFunction

- argTypes —» Array
-argType —, External Type

- compiledSpec —» Wword Array <—

- referentClass - basicTypeSpec
UndefinedObject ExternalStructure subclass
- compiledSpec

Figure 1 Object graph: FFI CompiledMethod pointing to ExternalType referentClass and compiledSpec

In order to understand what is a possible combination of argument type specification and
actual argument object, it is necessary to dive into the FFI Plugin. The code is a bit complex
with a lot of logic, and the result of reverse engineering is presented in following table. We
can observe a few unexpected behaviors:

Table 8 Currently possible combination of type and object (top) versus expected or wished (bottom)

argSpecType Method arg oop/oop class

argSpec= compiledSpec argClass=referentClass nil |true |false |Intqu|charact [Float |S!rin; : :
Atomic _Pointer i

isStruct =true Unsafe: no typechecking

1

1

1

0

0

0 1 0|ffiArgByValue:

ffiAtomicArgByReference: /

0 1 0|ffiAtomicStructByReference:

ffiAtomicArgByReference: /
0 ffiAtomicStructByReference:
1 1 0ffiPushStructureContentsOf:
1 0 1|ffiPushStructureContentsOf:
1 1 0|ffiPushStructureContentsOf:

oop classinherits |oop classinherits|

1 0 | ffiPushStructureContentsOf: Cl Class
1 1
1 0
1 1
1 0
o 1
o 0
0 1 ffiPushPointerContentsOf:
0 0 1|ffiPushPointerContentsOf:

Data | |

0 1
0 0
0 1
0 0

_ Unconsistent spec, should not happen
named type with no corresponding class
Aliased atomic type
FFl return error

Valid FFl argument on some condition
Valid FFl argument

The limitations of Squeak FFI

No support for array
No type longer than 65535 bytes

No support for pointer arity

What if the Smalltalk value is outside bounds of C type value?
What is the search path of ExternalLibrary?

How to handle cross platform and platform specific libraries?
What if a function takes more than 15 arguments?

Why ExternalData inherits from ExternalStructure?

The callback to Smalltalk code.

The threaded FFI.

argSpecType Method arg oop/oop
argSpec= compiledSpec argClass=referentClass nil [true Jfalse [integedCharacte]Float [string |
Atomic Pointer Str |
1 o
1 o
1 1
1 1
o o
o o ffiPushStructureContentsOf:
o 1 1 1 |ffiPushStructureContentsOf:
0 1 1 0 ffiPushStructureContentsOf:

Unsafe: no type checking

