[Vm-dev] Debugging Spur32 genPrimitiveHighBit

Nicolas Cellier nicolas.cellier.aka.nice at gmail.com
Tue Feb 18 21:53:25 UTC 2020


Hi all,
I confirm that generated code for CLZ (LZCNT) is incorrect on IA32 arch.
The registers are swapped!

Here is an extract:

    0x5c26a9c: 83 e0 01        andl   $0x1, %eax
    0x5c26a9f: eb 11           jmp    0x5c26ab2
    0x5c26aa1: 90              nop
    0x5c26aa2: 90              nop
    0x5c26aa3: 90              nop
    0x5c26aa4: 89 d0           movl   %edx, %eax
    0x5c26aa6: 83 e0 03        andl   $0x3, %eax
    0x5c26aa9: 75 f1           jne    0x5c26a9c
    0x5c26aab: 8b 02           movl   (%edx), %eax
    0x5c26aad: 25 ff ff 3f 00  andl   $0x3fffff, %eax           ; imm =
0x3FFFFF
    0x5c26ab2: 39 c8           cmpl   %ecx, %eax
    0x5c26ab4: 75 e0           jne    0x5c26a96
    0x5c26ab6: f3 0f bd d0     lzcntl %eax, %edx
    0x5c26aba: 74 0d           je     0x5c26ac9
    0x5c26abc: 35 1f 00 00 00  xorl   $0x1f, %eax
    0x5c26ac1: 89 c2           movl   %eax, %edx
    0x5c26ac3: d1 e2           shll   %edx
    0x5c26ac5: 83 c2 01        addl   $0x1, %edx
    0x5c26ac8: c3              retl

What happens is that we count the leading zeros in $eax (TempReg) and store
the result in $edx (ReceiverResultReg) ...

    0x5c26ab6: f3 0f bd d0     lzcntl %eax, %edx

We want the contrary!

$eax contains 1, presumably because we used it to check for SmallInteger
tag bit:

    0x5c26a9c: 83 e0 01        andl   $0x1, %eax

So we invariably get 31 leading zeroes in $edx (but we will later overwrite
the contents of $edx).

Then we interpret $eax as the result (thus 1 leading zero), bitInvert, and
get 30 as the result for highBit, store that in $edx (shifted and tagged),
and we're done... Err!

Obviously the code generation is wrong!
It did work when I first wrote it, and still work on x64 because we use
$eax (TempReg) as both source and dest reg...

Though, I do not see what we are doing wrong:

concretizeClzRR
<inline: true>
| maskReg dest  |
maskReg := operands at: 0.
dest := operands at: 1.
machineCode
at: 0 put: 16rF3;
at: 1 put: 16r0F;
at: 2 put: 16rBD;
at: 3 put: (self mod: ModReg RM: dest RO: maskReg).
^4

and we invoke it like that:
cogit ClzR: srcReg R: destReg.

ClzR: reg1 R: reg2
"reg2 := reg1 countLeadingZeros"
<inline: true>
<returnTypeC: #'AbstractInstruction *'>
^self gen: ClzRR operand: reg1 operand: reg2

So it seems to me that all is in the correct order...
cogitIA32 likewise seems perfrectly correct:

static sqInt
genPrimitiveHighBit(void)
{
    AbstractInstruction *anInstruction11;
    AbstractInstruction *anInstruction2;
    AbstractInstruction *anInstruction4;
    AbstractInstruction *jumpNegativeReceiver;
    AbstractInstruction *jumpNegativeReceiver11;
    AbstractInstruction *jumpNegativeReceiver3;
    sqInt literal1;


        /* remove excess tag bits from the receiver oop */

        /* and use the abstract cogit facility for case of single tag-bit */
        /* begin genHighBitIn:ofSmallIntegerOopWithSingleTagBit: */
        if (((ceCheckLZCNT()) & (1U << 5)) != 0) {
                /* begin genHighBitClzIn:ofSmallIntegerOopWithSingleTagBit:
*/
                genoperandoperand(ClzRR, ReceiverResultReg, TempReg);
                if (!(setsConditionCodesFor(lastOpcode(), JumpZero))) {
                        /* begin checkQuickConstant:forInstruction: */
                        anInstruction2 = genoperandoperand(CmpCqR, 0,
TempReg);
                }

                /* Note the nice bit trick below:
                   highBit_1based_of_small_int_value = (BytesPerWord * 8) -
leadingZeroCout_of_oop - 1 toAccountForTagBit.
                   This is like 2 complements (- reg - 1) on (BytesPerWord
* 8) log2 bits, or exactly a bit invert operation... */
                jumpNegativeReceiver3 =
genConditionalBranchoperand(JumpZero, ((sqInt)0));
                /* begin checkLiteral:forInstruction: */
                literal1 = (BytesPerWord * 8) - 1;
                anInstruction11 = genoperandoperand(XorCwR, (BytesPerWord *
8) - 1, TempReg);
                jumpNegativeReceiver = jumpNegativeReceiver3;
                goto l10;
        }

which concretize in:

        case ClzRR:
                /* begin concretizeClzRR */
                maskReg = ((self_in_dispatchConcretize->operands))[0];
                dest = ((self_in_dispatchConcretize->operands))[1];
                ((self_in_dispatchConcretize->machineCode))[0] = 243;
                ((self_in_dispatchConcretize->machineCode))[1] = 15;
                ((self_in_dispatchConcretize->machineCode))[2] = 189;
                ((self_in_dispatchConcretize->machineCode))[3] =
(modRMRO(self_in_dispatchConcretize, ModReg, dest, maskReg));
                return 4;

The order seems correct all the way down...
As a workaround, I could revert Eliot's optimization and force a
    cogit MoveR: ReceiverResultReg R: TempReg.
But I'd rather want to understand where's the problem...
Another pair of eyes may help!
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.squeakfoundation.org/pipermail/vm-dev/attachments/20200218/47d058fb/attachment.html>


More information about the Vm-dev mailing list