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ABSTRACT 

Many interactive computing environmencs 
provide automatic storage reclamation and vir- 
tual memory to ease the burden of managing 
storage. Unfortunately, many storage reclams~- 
tion algorithms impede interaction with dis- 
tracting pauses. Generation Scavenging is a rec- 
lamation algorithm that has no noticeable 
pauses, eliminates page faults for transient 
objects, compacts objects without resorting to 
indirection, and reclaims circular structures, in 
one third the time of traditional approaches. 

We have incorporated Generation Scaveng. 
int. in Berkeley Smalltalk (BS), our Smalltalk- 
80* implementation, and instrumented it to 
obtain performance data. We are also designing 
a microprocessor with hardware support for 
Generation Scavenging. 
Keywords: garbage collection, generation, per- 
sonal computer, real time, scavenge, Smalltalk, 
workstation, virtual memory 

Throw back the little ones 
and pan fry the big ones; 
use tact, poise and reason 
and gently squeeze them. 

Steely Dan, 
"Throw Back the Little Ones" 
[BeF741 
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1. Introduction 
Researchers have designed several interactive pro- 

gramming environments to expedite software construe- 
tion [She83] Central to such environments are high level 
languages like Lisp, Cedar Mesa, and Smalltalk-80 TM 
iGoR83], that provide virtual memory and automatic 
storage reclamation. Traditionally, the cost of a storage 
management strategy has been measured by its use of 
CPU time, primary memory, and backing store opera- 
tions averaged over a session. Interactive systems 
demand good short-term performance as well. Large, 
unexpected pauses caused by thrashing or storage recla- 
mation are distracting and reduce productivity. We have 
designed~ implemented, and measured Generation 
Scavenging, a new garbage collector that 
• limits pause times to a fraction of a second, 
• requires no hardware support, 
• meshes well with virtual memory, 
• reclaims circular structures, and 
• uses less than 2% of the CPU time in one Smalltalk 

system. This is less than a third the time of the 
next best algorithm. 
A group of graduate students and faculty at Berke- 

ley is building a high performance microchip computer 
system for the Smalltalk-80 system, called Smalltalk On 
A RISC (SOAR) [Pat83, UBF84]. We are testing the 
hypothesis that the addition of a few simple features can 
tailor a simple architecture to Smalltalk. Berkeley 
Smalltalk (BS), is our implementation of the Smalltalk- 
80 TM system for the SUN workstation. Our present ver- 
sion of BS reclaims storage with Generation Scavenging. 
By instrumenting BS and running the Smalltalk-80 
benchmarks [McC83], we have obtained measurements of 
a generation-based garbage collector. 

2. The Relationship Between Virtual  Memory and 
Storage Reclamation 

The storage manager must ensure an ample supply 
of virtual addresses for new objects, as well as maintain- 
ing a working set in physical memory for existing objects. 
Traditionally, this function has been separated into two 
parts, as Table 1 shows. 
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Table i. Traditional decomposition o~ storage management. 
name responsibility pitfall 
virtual memory fetching data from disk" thrashing 
auto reclamation recycling address space distracting pauses to GC 

Sometimes the distinction between virtual memory 
and automatic reclamation can lead to inefficiency or 
redundant functionality. For example, some garbage col- 
lection (GC) algorithms require that an object be in main 
memory when it is freed; this may cause extra backing 
store operations. As another example, both compaction 
and virtual memory make room for new objects by mov- 
ing old ones. Thus storage reclamation algorithms and 
virtual memory strategies must be designed to accommo- 
date each other's needs. 

3. P e r s o n a l  C o m p u t e r s  M u s t  Be R e s p o n s i v e  
Personal computers differ from time-sharing systems. 

For example, unresponsive pauses cannot be excused 
without other users to blame. Yet personal machines 
have time available for periodic off-line tasks, for even 
the most fanatic hackers sleep occasionally. Personal 
computers promise continual split-second response time 
which is known to significantly boost productivity 
[ThaSl], 

4. V i r t u a l  M e m o r y  fo r  A d v a n c e d  P e r s o n a l  C o m -  
puters  

Computers with fast, random access secondary 
storage can exploit program locality to manage main 
memory for the programmer. Advanced personal com- 
puter systems manage memory in many small chunks, or 
objects. The Symbolics ZLISP, Cedar-Mesa, Smalltalk- 
80, and Interlisp-D systems are examples. Table 2 sum- 
marizes segmentation and paging, the two virtual 
memory techniques. 

objects in advanced personal computer systems pose 
tough challenges for a segmented virtual memory. For 
example in our Smalltalk-80 memory image, the length of 
an object can vary from 24 bytes (points), to 128,000 
bytes (bitmaps), with a mean of about 50. Supposed seg- 
mentation alone is used. When an object is created or 
swapped in, a piece of main memory as large as the 
object must be found to hold it. Thus, a few large bit- 
maps can crowd out many smaller but more frequently 
referenced objects. 

When objects are small, it takes many of them to 
accomplish anything. Smalltalk-80 systems already con- 
tain 32,000 to 64,000 objects, and this number is increas- 
ing. A segmented memory with this many segments 
requires either a prohibitively large or a 
content-addressable segment t abh3  This large number 
hampers address translation. 

4.2.  D e m a n d  P a g i n g  
The simplicity of page table hardware and the 

opportunity to hide the address translation time attract 
hardware designers [Den70]. Paging, however, is not a 
panacea for advanced personal computers. It can 
squander main memory by dispersing frequently refer- 
enced small objects over many pages. Blau has shown 
that periodic offiine reorganization can prevent this disas- 
ter IBis831 . The daily idle time of a personal computer 
can be used to repack objects onto pages. 

Many objects in advanced personal computers live 
only a short time. The paging literature contains little 
about strategies for such objects. Since their lifetimes are 

Table 

chunk size (bytes) 
# address space subdivisions 
translation map 
space overhead 
time overhead 
first implemented 
current example 

2. Segmentation vs. Paging 
segmentation 
16 to 64K 
8 -  64K 
associative 
disk buffers 
copying from buffers 
B 5000 (1901)[LoK82] 
Intel iAPX-286 

4.1.  S e g m e n t a t i o n  
A segmented virtual memory can allocate primary 

memory more precisely than paging, but Stamos has 
shown for Smalltalk that segmentation uses fewer back- 
ing store operations only when main memory is in scarce 
supply [Sta82]. Moreover, the variety and quantity of 

paring 
512, 1024, 2048, or 4096 
128- 84K 
direct or associative 
unused portions of pages 
offline reorganization* 
Atlas (1962)[KEL82] 
VAX-11 

shorter than the time to access backing store, these 
objects should never be paged out. By segregating short- 
lived objects from permanent ones, Generation Scaven 9- 
ing permits them to be locked in main memory. Table 3 
summarizes the obstacles that advanced personal comput- 
ers pose for a paged virtual memory, and the solutions 
that SOAR has adopted. BS [UnP83] and the DEC 
VAX/Smalltalk-80 system {BaS83] use paging. 

* While BS is the first paging Smaloliline reorganization of the virtual space iBis83], 
object swapping systems starting with OOZE did reorganizations regularly ling83]. 

The OOZE virtual memory system for Smalltalk-76 solved this problem but incurred 
other costs ling83 I. 
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Table 3. Paging problems and solutions. 
problem SOAR solution 
internal fragmentation 
address size 
paging short-lived objects 

description 
1 object / page 
need 64K 50 byte objects 
page faults for dead objects 

offline reorganization 
big addresses (228 words) 
segregation by age, 
don't  page new ones 

5. Automatic Storage Reclamation for Advanced 
Personal Computers 

Advanced personal computers depend on efficient 
automatic storage reclamation. For example, our 
Smalltalk-80 system allocates a new object every 80 
instructions. This is consistent with Foderaro's results 
for a few voracious Lisp programs [FoF81]. Since the 
total size of the system was in an equilibrium for these 
measurements, the reclamation rate must match the allo- 
cation rate. The mean dynamic object size is 70 bytes 
long. Thus, 7/8 byte must be reclaimed for every 
instruction executed. 

Let's examine several garbage collection algorithms 
and evaluate their suitability for advanced personal com- 
puters. Where possible, we use performance figures from 
actual implementations of these algorithms. Table 4 
summarizes the hardware configurations of these systems. 
The Xerox Dorado Smalltalk-80 system is closest to an 
advance personal computer; when we try to compare 
results we shall normalize to that speed. For example the 
bandwidth imposed on the BS II storage allocator is 

70 bytes 1 object 9000 bytscodes = 7800 bytes 
1 object X '80 instructions X second ~scond" 

If we scale this up to the speed of the Xerox Dorado sys- 
tem, the storage allocation rate exceeds 100 Kb/s. 

This is unacceptable. 
There are many automatic storage reclamation algo- 

rithms [CohS1]. They can be divided into two families: 
those that maintain reference counts, and those that 
traverse and mark live objects. In the next few sections, 
we examine several reclamation algorithms and discuss 
their suitability for advanced personal computers. 

6. Reference Counting Automatic Storage Recla- 
mation Algorithms 

Reference counting was invented in 1960 [Co160] and 
has undergone many refinements [Knu73, StaS0]. The 
central idea is to maintain a count of the number of 
pointers that reference each object. If an object's 
reference count should fall to zero, the object is no longer 
accessible and its space can be reclaimed. 

6.1. Immediate Reference Counting 
Immediate reference counting adjusts reference 

counts on every store instruction and reclaims an object 
as soon as its count drops to zero. Both the Dorado 
Smalltalk-80 system iGoR83] and LOOM [KaK83, StaB2] 
reclaim space with this algorithm. Compaction is han- 
dled separately and typically causes a pause of 1.3 
seconds every 1 to 20 minutes on a SUN. 

Table 4. Hardware Characteristics 
System CPU 
Dorado ST 
Franz Lisp 
Dolphin ST 
VAX/Smalltalk-80 
BS II 

raw speed Relative ST speed main memory 
Dorado 3 MIPS 13 2 Mb 
VAX-II/780 1 MIPS n.a. 3 Mb 
Dolphin 0.3 MIPS 1.5 1.5 Mb 
VAX-11/780 1 M1PS 1.0 3 Mb 
SUN 1.5 0.4 MIP 1.0 2 Mb 

Jon L. White was one of the first researchers to 
exploit the overlap between the functions of virtual 
memory and garbage collection, and he proposed that 
address space reclamation was obsolete in a virtual 
memory [Whi801. He pointed out that as long as refer- 
enced objects were compacted into main memory, dead 
objects would be paged out to backing store. This stra- 
tegy may have adequate performance as far as CPU time 
and main memory utilization, but it demands too much 
from the backing store in a Smalltalk-80 system. Even if 
a 100 Mb backing store could keep up with the 100 
Kb/sec allocation bandwidth it would fill up in less than 
an hour. 

l{IOMb 
disk 20 minutes. lOOKb trash 

second 

Counting references takes time. For each store, the 
old contents of the cell must be read so that its referent's 
count can be decremented, and the new content's 
referent's count must be increased. This consumes 15% 
of the CPU time [Deu83, UnP83]. When an object's 
count diminishes to zero, it must be scanned to decre- 
ment the counts of everything it references. This recur. 
sire freeing consumes an additional 5% of execution time 
[Deu82b, UnP83]. Thus, the total overhead for reference 
counting is about 20%. This is acceptable for personal 
computers, but deferred reference counting and Genera- 
t ion Scavenging (discussed below) use much less. 

This algorithm cannot reclaim cycles of unreachable 
objects. Even though the whole cycle is unreachable, 
each object in it has a nonzero count. Deutsch [Deu83] 
believes that this limitation has hurt programming style 
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on the Xerox Smalltalk-80 system (which employs refer- 
ence counts), and Lieberman [LiI~ has also stated that 
circular structures are becoming increasingly important 
for AI applications. The advantage of immediate refer- 
ence counting is that it uses the least amount of memory 
for dynamic objects-about 15 Kb when running the 
Smalltalk-80 macro benchmarks. However, its inability 
to reclaim circular structures remains a serious drawback 
for advanced personal computers. 

6.2. Deferred Reference Counting 
The Deutsch-Bobrow deferred reference counting 

algorithm reduces the cost of maintaining reference 
counts. Three contemporary personal computer program- 
ming environments use this algorithm: Cedar Mesa, 
InterLisp-D (both on Dorados), and an experimental 
SmaUtalk-80 system which furnished the performance 
measurements quoted herein iDeS84] . The Deutsch- 
Bobrow algorithm diminishes the time spent adjusting 
reference counts by ignoring references from local vari- 
ables [DeB76]. These uncounted references preclude rec- 
lamation during program execution. To free dead 
objects, the system periodically stops, and reconciles the 
counts with the uncounted references. On a typical per- 
sonal computer the algorithm requires 25 Kb more space 
than immediate reference counting, and causes 30 ms 
pauses every 500 ms. 

Baden's measurements of a Smalltalk-80 system sug- 
gest that this method saves 90% of the reference count 
manipulation [Bad82]. Deferred reference counting 
automatic storage reclamation spends about 3% of the 
total CPU time manipulating reference counts, 3% for 
periodic reconciliation, and 5% for recursive freeing. 
Thus, deferred reference counting uses about half the 
time of simple reference counting. 

Although more efficient than immediate reference 
counting, deferred reference counting is no better at 
reclaiming circular structures. This is its biggest draw- 
back. 

7. Marking Automatic Storage Reclamation Algo- 
rithms 

Marking reclamation algorithms collect garbage by 
first traversing and marking reachable objects and then 
reclaiming the space filled by unmarked objects. Unlike 
reference counting, these algorithms reclaim circular 
structures. 

7.1. Mark and Sweep 
The first marking storage reclamation algorithm, 

mark and sweep, was introduced in 1960 [McC60]. It has 
many variations ICoh81,Knu73,Sta80], and is used in 
contemporary systems [FoF81]. After marking reachable 
objects, the mark and sweep algorithm reclaims one 
object at a time, with a sweep of the entire address space. 
Since the marking phase inspects all live objects, and the 
sweeping phase modifies all dead ones, this algorithm can 
be inefficient. Fateman has found that some LISP pro- 
grams running on Franz Lisp spend 25% to 40% of their 

time on garbage collecting [Fat83] and require about 1.9 
Mb for dynamic objects (compared to about 1 Mb for 
static objects). 

The marking phase inspects every live object and 
thereby causes backing store operations. Foderaro found 
that, for some LISP programs, hints to the virtual 

memory system could reduce the number of page faults 
for a Franz mark and sweep from 120 to 90 [FoF81]. 
The result is a 4.5 second pause every 79 seconds. This is 
unacceptable for an interactive personal computer. 

7.2. Scavenging Live Objects 
The costly sweep phase can be eliminated by moving 

the live objects to a new area, a technique called scaveng- 
ing. A scavenge is a breadth-first traversal of reachable 
objects. After a scavenge, the former area is free, so that 
new objects can be allocated from its base. In addition to 
the performance savings, a scavenging reclaimer also com- 
pacts, obviating a separate compaction pass. Scavenging 
algorithms must also update pointers to the relocated 
objects. 

Automatic storage reclamation algorithms that 
scavenge include Baker's semispace algorithm [Bak77], 
Ballard's algorithm [BaS83], Generation Garbage Collec- 
tion [LiH], and Generation Scavenging. Baker's algorithm 
divides memory into two spaces and scavenges all reach- 
able objects from one space to the other. BaUard imple- 
mented this algorithm for his VAX]Smalltalk-80 system 
and observed that many objects were long-lived. The 
addition of a separate area for these objects resulted in a 
substantial performance improvement by eliminating the 
periodic copy of them. Ballard's system has 600 Kb for 
static objects, a 512 Kb object table, and two 1 Mb sem- 
ispaces for dynamic objects. It spends only 7% of its 
time reclaiming storage, including sweeping the object 
table to reclaim entries. 

Generation Garbage Collection [LiH] exploits the 
observation that many young objects die quickly and gen- 
eralizes Baker's algorithm by segregating objects into 
generations, each within its own pair of semispaces. Each 
generation may be scavenged without disturbing older 
ones, permitting younger generations to be scavenged 
more often. This reduces the time spent scavenging 
older, more stable objects. At present, there are no pub- 
lished performance data on this algorithm. 

The above scavenging algorithms incur hidden costs 
because they avoid pauses by interleaving scavenging 
with program execution. As a consequence, forwarding 
pointers are required and each load instruction must 
check for and possibly follow such a forwarding pointer. 
The algorithms that segregate objects into generations 
must maintain tables of references from older to younger 
objects. The burden of maintaining these tables falls on 
some of the store instructions. 

8. The Generation Scavenging Automatle Storage 
Reclamation Algorithm 

Generation Scavenging arose from our attempts find 
an efficient, unobtrusive storage reclamation algorithm 
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for Berkeley Smalltalk. BS originally reclaimed storage 
by reference counting. Measurements of object lifetimes 
proved that  young objects die young and old objects con- 
tinue to live. We then designed Generation Scavenging to 
exploit that behavior and substituted it for reference 
counting in Berkeley Smalltalk. The result was an eight- 
fold reduction in the percentage of time spent reclaiming 
storage-from 13% to 1.5%. In addition, the intrinsic 
compaction provided by scavenging made it possible to 
eliminate the Object Table and its concomitant indirec- 
tion. After these changes, BS ran 1.7 times faster than 
before. 

8.1. O v e r v i e w  o f  Generatlon Scavenging Algo-  
r i t h m  

Each object is classified as either new or old. Old 
objects reside in a region of memory called the old area. 
All old objects that reference new ones are members of 
the remembered set. Objects are added to this set as a 
side effect of store instructions. (This checking is not 
required for stores into local variables because stack 
frames are always new.) Objects that no longer refer to 
new objects are deleted from the remembered set when 
scavenging. All new objects that  are referenced must be 
reachable through a chain of new objects from the (old) 
objects in the remembered set (and virtual machine regis- 
ters). Thus, a traversal in new space, starting at the 
remembered set can find all live new objects. 

There are three areas for new objects: 
• NewSpace, a large area where new objects are 

created, 
• PastSurvivorSpace, which holds new objects that  

have survived previous scavenges, and 
• FutureSurvivorSpace, which is empty during pro- 

gram execution. 
A scavenge moves live new objects from NewSpace and 
PastSurvivorSpace to FutureSurvivorSpace, then inter- 
changes Past  and FutureSurvivorSpace. At  this point, no 
live objects are left in NewSpace, and it can be reused for 
creation. The scavenge incurs a space cost of only one 
bit per object. Its time cost is proportional to the 
number of live new objects and thus is small. If a new 
object survives enough scavenges, it moves to the old 
object area and is no longer subject to online automatic 
reclamation. This promotion to old status is called tenur- 
ing. Table 5 summarizes the characteristics of ~he two 
generations forGeneration Scavenging. 

8.2. Comparison of Generation Scavenging With 
Other Scavenging Algorithms 

Generation Scavenging most resembles Ballard's 
scheme: 
• It segregates objects into young and old generations. 
• It copies live objects instead of sweeping dead 

objects. 
• I t  reclaims old objects offline. 
Generation Scavenging differs from Ballard's Semispaees 
and Lieberman-Hewitt 's Generation Garbage Collection. 
Unlike those algorithms, Generation Scavenging 
• conserves main memory by dividing new space into 

three spaces instead of two. 
• is not incremental. Instead, the pauses introduced 

by Generation Scavenging are small enough to be 
unnoticeable for normal interactive sessions. (They 
are noticeable in real-time applications such as ani- 
mation.) This eliminates the checking needed for 
load instructions. 

8.3. Evaluating Generation Scavenging 
The Smalltalk-80 macro benchmarks [McC83] consist 

of representative activities like compiling and text edit- 
ing. We measured the performance of Generation 
Scavenging in BS II while running these benchmarks. 
Table 6 shows the results. 

CPU Time Cost: Our measurements of BS lI show 
that  Generation Scavenging requires only 1.5% of the 
total (user CPU) time. This is four times better than its 
nearest competitor, Ballard's modified semispaces, which 
takes about 7%. 

One reason that  Generation Scavenging looks so good 
is that  BS executes programs more slowly than some 
other Smalltalk-80 systems. Based on bytecode mix 
measurements, Deutsch has estimated that  a 10 Mhz 
68000 with no wait states could execute Smalltalk-80 
bytecodes no faster than three times the Dolphin's rate 
[Deu82a]. Then the bytecode execution rate per CPU 
second would be 

4.5 Mbytecodes X 1.5 Dolphin speed × 3 optimal 68K speed 
280 BS seconds BS speed Dolphin speed 

72000 bytecodes 
second 

Table 5. Generations in Generation ScavenEing. 
contents volatile obiects 
residence 
space size 
location 
created by 
reclaimed by 
reclaimed every 
reclamation takes 

volatile objects 
new space 
200 Kb* 
main memory 
instantiation 
scavenging 
16 sec 
.160 sec 

permanent objects 
old space 
940 Kb 
demand paged 
tenuring 
mark-and-sweep 
3 - 8  hrs 
5 rain 

* 140 Kb for New area + 2 * 28Kb for survivors 



The analogous upper bound for scavenging is approxi- 
mately 10 #s per scavenged word. (Each scavenged word 
must be copied and later forwarded.) Since there are an 
average of 4800 words of survivors per scavenge, each 
scavenge would take 48 ms. Hence the CPU time cost for 
scavenging over our experimental run of the benchmarks 
on such a system would be 

TItS 48 X 32 scavenges 
scavenge ~ 2.5% 

4.5 Mbytccodcs 
72000 bytecodes 

second 

This is still less than third the measured CPU time of 9% 
for deferred reference counting. 

M a i n  M e m o r y  C o n s u m p t i o n :  Although each of 
the three object areas is about 140 Kb, the survivor areas 
only hold 56 Kb, and the rest need not be resident. 
Thus, the primary memory cost for dynamic objects is 
200 Kb, about 10% of the BS main memory. If we used 
Baker semispaces with the same scavenging rate, each 
space would need to be 140Kb + 28Kb, for a total  of 360 
Kb. 

Back ing  Store  Operat ions :  BS H employs offline 
depth-first reorganization for the old objects, and since 
new objects are always created in the same area, it can 
remain in main memory. Unfortunately, Unix on the 
SUN 1.5 does not implement the system call which would 
lock down this area. Thus, the first six scavenges caused 
283 minor page faults (page reclaims), and the rest of 
them caused four. With a working set of 930 Kb, 60 

major page faults occurred over the entire computation. 
Pauses:  Except for the page faulting during first six 

scavenges (see above), the pauses were small and mostly 
unobtrusive, averaging 150 ms. The longest pause was 
only 330 ms. About  15% of the pause time was spent in 
the Unix kernel on unrelated overhead. This algorithm's 
performance meets our requirements. 

8.4.  P r e m a t u r e  P r o m o t i o n :  T h e  T e n u r i n g  Prob-  
lem 

To minimize scavenging time, new objects that  have 
survived several scavenges are awarded old status, with 
the expectation that  their usefulness will continue. 
Sometimes this is not the case, and a promoted object 
soon becomes unreachable and wastes old space. (Recall 
that  old objects are reclaimed offline.) We call this the 
tenuring problem. In our sample run, there were 9100 
bytes of objects that  were promoted but  then died. This 
is 0.2% of all garbage collected in the run. Fur ther  
research could reduce this number with 
• a stricter tenuring policy, 
• an adaptive tenuring policy, or 
• hints from the executing program. 

9. S u m m a r y  o f  R e c l a m a t i o n  A l g o r i t h m s  
Table 7 summarizes our results. Deutsch-Bobrow 

deferred reference counting and Generation Scavenging 
perform well enough for an advanced personal computer. 

= , . 

Table 6. Performance of Generation Scavenging 
total  instructions executed 
amount of storage reclaimed 
amount of tenured storage 
number of checked stores 
number of remembered objects 
number of scavenges 
mean length of survivors 
total user CPU time 
total  Real time 
real time scavenging 
user time scavenging 
time checking stores 
max old space used 
max new space 
max survivor space 
total size 
resident set size 
total  page faults 
min pause time* 
median pause time* 
mean pause time* 
90th %lie pause time* 
max pause time* 
mean time between scavenges 

4500 k 
3900 kb 
9.1 kb 
190 k 
320 
32 
4 .8Kword 
280 s. 
500s. 
1.8% 
1.5% 
0.1% 
940Kb  
140Kb 
2 8 K b  
1800Kb 
930Kb  
61 
90ms 
150ms 
160ms 
220ms 
330ms 
16 seconds 

* excluding first six scavenges, which thrashed because Unix would 
not let us lock down the new area. 



Generation Scavenging is superior to deferred reference 
counting because it 
• reclaims circular structures, 
• includes compaction, and 
• runs in less than a fourth of the CPU time. 

Copying survivors is much cheaper than scanning 
corpses. 

Careful consideration of the virtual memory system is 
essential. Generation Scavenging combines these lessons 
to meet stringent performance goals for CPU time (2%), 
primary memory (200kb), backing store operations 

page it 
immed ref. count 

(compaction) 
deferred ref. count 

{compaction) 
mark and sweep 
Ballard 
Generation Scavenging 

Table 7. Summary of reclamation strategies. 
CPU time main memory paging 

for dynamic I/Os 
objects 

? 15 Kb ~50 /s  
15% - 20% 15 Kb 

pause pause 
time interval 
{see) {see) 

11% 40 Kb 

? 0 co 
1.3 60- 1200 

? 0.030 0.30 
1.3 60-  1200 

25% - 40% 1900 Kb 00/go 4.5 74 
7% 2000 Kb 0 0 oo 
1.5% -. 2.5% 200 Kb 1.2/s 0.38 30 

10. Architectural support  for Generation 
Scavenging 

Our group at Berkeley is building a high perfor- 
mance microchip computer system for the Sma]ltalk-80 
system, called Smalltalk On A RISC (SOAR) [Pat83]. 
We are testing the hypothesis that the addition of a few 
simple features can tailor a simple architecture to 
Smalltalk. The SOAR chip supports virtual memory 
with restartable, fixed sized instructions and a page fault 
interrupt [KIF83}. An off-chip translation look-aside 
buffer (TLB) translates addresses and maintains refer- 
enced information. The SOAR host board hides the TLB 
access time in memory access time [BID83]. Thus 'the sili- 
con cost for virtual memory is about 20 support chips for 
the TLI3. 

To support Generation Scavenging, all pointers 
include a four-bit tag. When a store instruction stores a 
younger pointer into an older object, a special trap 
occurs. The software trap handler then remembers the 
reference. The tag-checking PLA has 8 inputs and one 
output, and occupies about 0.1% of the total chip area. 
The cost of the extra control logic to handle the trap is 
harder to measure. 

11. Conclusions 
The combination of generation scavenging and pag- 

ing provides high performance automatic storage reclama- 
tion, compaction, and virtual memory. It has proven its 
worth daily in Berkeley Smalltalk, which has supported 
the SOAR compiler project, architectural studies, and 
text editing for portions of this paper. 

High performance storage reclamation relies oll two 
principles: 
• Young objects die young. Therefore a reclamation 

algorithm should not waste time on old objects. 
• For young objects, fatalities overwhelm survivors. 

{l.2/s), and pause times (I/6 - 1/3 s). 
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Appendix A. Generation Scavenging Details 
We present the algorithm top-down, in pidgin C: 

struct space { 
word t *firstWord;[* start of space */ 
int size; /* number of useawords in space */ 

}; 
struct object { 

int size; 
int age; 
boolean isForwarded; 
boolean isRemembered; 
union { 

*contents[]; 
*forwardingPointer; 

}; 
}; 

struct object 
struct object 

struct space 

struct object 
int 

/ ,  

, /  

NewSpace, PastSurvivorSpace, FutureSurvivorSpace, OldSpace; 

*Rememb eredSetContents[MaxRemembered]; 
RememberedSetSize; 

The main routine, generationScavenge, first scavenges the new 
objects immediately reachable from old ones. Then it 
scavenges those that are transitively reachable. 
If this results in a promotion, the promotee gets remembered, 
and it first scavenges objects adjacent to the promotee, 
then scavenges the ones reachable from the promoted. 
This loop continues until no more reachable objects are left. 
At that point, PastSurvivorSpace is exchanged with FutureSurvivorSpace. 

Notice that each pointer in a live object is inspected once and 
only once. The previousRememberedSetSize and 
previousFutureSurvivorSpaceSize variables ensure that no object 
is scanned twice, as well as detecting closure. 
If this were not true, some pointers might get forwarded twice. 

• enerationScavenge 0 

int previousR ememberedSetSize; 
int previousFut ureSurvivorSpaceSize; 

previousRememberedSetSize ~- 0; 
previousFutureSurvivorSpaceSize -~ 0; 

while (TRUE) { 
scavengeR ememberedSetStar tingAt(previousRememberedSetSize); 
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if (previousFutureSurvivorSpaceSize ~ FutureSurvivorSpace.size) 
break; 

previousRememberedSetSize -~ RememberedSetSize; 
scavengeF utureSurvivorSp aceStartingAt(previousFutureSurvivorSpace.size); 
if (previousRememberedSetSize ~ -  RememberedSetSize) 

break; 

previousFutureSurvivorSpaceSize ~- FutureSurvivorSpace.size; 

ex change(PastSurvivorSpace, FutureSurvivorSpace); 

* 

, /  

scavengeRememberedSetStartingAt(n} traverses objects in the remembered 
set starting at the nth one. If the object does not refer to any new 
objects, it is removed from the set. Otherwise, its new referents 
are scavenged. 

scavengeRememberedSetStartingAt(dest) 
int dest; 
{ 

int source; 

for (source -~ dest; source <~ RememberedSetSize; + + source) 
if (scavengeReferentsOf(RememberedSet[sourcel)} ( 

RememberedSetContents[dest+ + ] ~- 
RememberedSetContents[source]; 

} 
else 

resetRememberedFlag(RememberedSetContents[sourcel); 
RememberedSetSize -~- dest; 

* 

, /  

scavengeFutureSurvivorSpaceStarting, Atln) does a depth-first 
traversal of the new objects starting at the one at the nth word 
of FutureSurvivorSpace. 

scavengeF utureSurvivorSpaceStartingAt(n) 
int n; 
{ 

struct object *currentObject; 
boolean dontCare; 

for( ; 
n <~ FutureSurvivorSpace.size; 
n + - ~  sizeOfObject(currentObject)) 

dontCare ~ scavengeReferentsOf( 
currentObject -~ FutureSurvivorSpace.firstWord[n]); 

* 

*/ 

scavengeReferentsOf(referrer) inspects all the pointers in referrer. 
If any are new objects, it has them moved to FutureSurvivorSpace, 
and returns truth. If there are no new referents, it returns falsity. 
For simplicity here, an object is just an array of pointers. 
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scavengeReferentsOf{referrer) 
struct object *referrer; 
{ 

int i; 
boolean foundNewReferrent; 
struct object *referent; 

foundNewReferent .~- FALSE; 
for (i = 0; i < referrer->size; i+ + ) { 

referrent ~ referrer.contents[i]; 
if (isNew(referrent)) { 

foundNewReferrent --~ TRUE; 
if (!isForwarded(referrent}) 

copyAndForwardObject{referent); 
referrer.contents[i] ~- referent->forwardingPointer; } 

} 
return (foundNewReferrent); 

* 

* copyAndForwardObject(obj) copies a new object either to 
* FutureSurvivorSpace, or if it is to be promoted, to OldSpaee. 
* It leaves a forwarding pointer behind. , /  

copyAndForwardObject(oldLocation) 
struct object *oldLocation; 
{ 

struct object *newLocation; 

if (oldLocation->obj age < MaxAge} ( 
+ + oldLoeation- > obj age; 
newLoeation -~ copyObjectToSpaee(oldLocation, 

Fut ureSurvivorSpace); 
} 
else 

newLocation ~ copyObjectToSpace(oldLocation, OldSpace); 

oldLocation->obj_forwardingPointer -~- newLocation; 

oldLocation->obj forwarded -~-~-- TRUE; 
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