
G e n e r a t i o n Scavenging: A Non-disruptlve High Perfornm.nce
Storage Reclamation Algori thm

David Ungar

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California 94720

ABSTRACT

Many interactive computing environmencs
provide automatic storage reclamation and vir-
tual memory to ease the burden of managing
storage. Unfortunately, many storage reclams~-
tion algorithms impede interaction with dis-
tracting pauses. Generation Scavenging is a rec-
lamation algorithm that has no noticeable
pauses, eliminates page faults for transient
objects, compacts objects without resorting to
indirection, and reclaims circular structures, in
one third the time of traditional approaches.

We have incorporated Generation Scaveng.
int. in Berkeley Smalltalk (BS), our Smalltalk-
80* implementation, and instrumented it to
obtain performance data. We are also designing
a microprocessor with hardware support for
Generation Scavenging.
Keywords: garbage collection, generation, per-
sonal computer, real time, scavenge, Smalltalk,
workstation, virtual memory

Throw back the little ones
and pan fry the big ones;
use tact, poise and reason
and gently squeeze them.

Steely Dan,
"Throw Back the Little Ones"
[BeF741

• Smalltalk-g0'I~vlis a t rademark of Xerox Corporation.

Permission to copy without fee all or part of this matedal is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To c.opy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0157500.75

1. Introduction
Researchers have designed several interactive pro-

gramming environments to expedite software construe-
tion [She83] Central to such environments are high level
languages like Lisp, Cedar Mesa, and Smalltalk-80 TM
iGoR83], that provide virtual memory and automatic
storage reclamation. Traditionally, the cost of a storage
management strategy has been measured by its use of
CPU time, primary memory, and backing store opera-
tions averaged over a session. Interactive systems
demand good short-term performance as well. Large,
unexpected pauses caused by thrashing or storage recla-
mation are distracting and reduce productivity. We have
designed~ implemented, and measured Generation
Scavenging, a new garbage collector that
• limits pause times to a fraction of a second,
• requires no hardware support,
• meshes well with virtual memory,
• reclaims circular structures, and
• uses less than 2% of the CPU time in one Smalltalk

system. This is less than a third the time of the
next best algorithm.
A group of graduate students and faculty at Berke-

ley is building a high performance microchip computer
system for the Smalltalk-80 system, called Smalltalk On
A RISC (SOAR) [Pat83, UBF84]. We are testing the
hypothesis that the addition of a few simple features can
tailor a simple architecture to Smalltalk. Berkeley
Smalltalk (BS), is our implementation of the Smalltalk-
80 TM system for the SUN workstation. Our present ver-
sion of BS reclaims storage with Generation Scavenging.
By instrumenting BS and running the Smalltalk-80
benchmarks [McC83], we have obtained measurements of
a generation-based garbage collector.

2. The Relationship Between Virtual Memory and
Storage Reclamation

The storage manager must ensure an ample supply
of virtual addresses for new objects, as well as maintain-
ing a working set in physical memory for existing objects.
Traditionally, this function has been separated into two
parts, as Table 1 shows.

157

Table i. Traditional decomposition o~ storage management.
name responsibility pitfall
virtual memory fetching data from disk" thrashing
auto reclamation recycling address space distracting pauses to GC

Sometimes the distinction between virtual memory
and automatic reclamation can lead to inefficiency or
redundant functionality. For example, some garbage col-
lection (GC) algorithms require that an object be in main
memory when it is freed; this may cause extra backing
store operations. As another example, both compaction
and virtual memory make room for new objects by mov-
ing old ones. Thus storage reclamation algorithms and
virtual memory strategies must be designed to accommo-
date each other's needs.

3. P e r s o n a l C o m p u t e r s M u s t Be R e s p o n s i v e
Personal computers differ from time-sharing systems.

For example, unresponsive pauses cannot be excused
without other users to blame. Yet personal machines
have time available for periodic off-line tasks, for even
the most fanatic hackers sleep occasionally. Personal
computers promise continual split-second response time
which is known to significantly boost productivity
[ThaSl],

4. V i r t u a l M e m o r y fo r A d v a n c e d P e r s o n a l C o m -
puters

Computers with fast, random access secondary
storage can exploit program locality to manage main
memory for the programmer. Advanced personal com-
puter systems manage memory in many small chunks, or
objects. The Symbolics ZLISP, Cedar-Mesa, Smalltalk-
80, and Interlisp-D systems are examples. Table 2 sum-
marizes segmentation and paging, the two virtual
memory techniques.

objects in advanced personal computer systems pose
tough challenges for a segmented virtual memory. For
example in our Smalltalk-80 memory image, the length of
an object can vary from 24 bytes (points), to 128,000
bytes (bitmaps), with a mean of about 50. Supposed seg-
mentation alone is used. When an object is created or
swapped in, a piece of main memory as large as the
object must be found to hold it. Thus, a few large bit-
maps can crowd out many smaller but more frequently
referenced objects.

When objects are small, it takes many of them to
accomplish anything. Smalltalk-80 systems already con-
tain 32,000 to 64,000 objects, and this number is increas-
ing. A segmented memory with this many segments
requires either a prohibitively large or a
content-addressable segment t abh3 This large number
hampers address translation.

4.2. D e m a n d P a g i n g
The simplicity of page table hardware and the

opportunity to hide the address translation time attract
hardware designers [Den70]. Paging, however, is not a
panacea for advanced personal computers. It can
squander main memory by dispersing frequently refer-
enced small objects over many pages. Blau has shown
that periodic offiine reorganization can prevent this disas-
ter IBis831 . The daily idle time of a personal computer
can be used to repack objects onto pages.

Many objects in advanced personal computers live
only a short time. The paging literature contains little
about strategies for such objects. Since their lifetimes are

Table

chunk size (bytes)
address space subdivisions
translation map
space overhead
time overhead
first implemented
current example

2. Segmentation vs. Paging
segmentation
16 to 64K
8 - 64K
associative
disk buffers
copying from buffers
B 5000 (1901)[LoK82]
Intel iAPX-286

4.1. S e g m e n t a t i o n
A segmented virtual memory can allocate primary

memory more precisely than paging, but Stamos has
shown for Smalltalk that segmentation uses fewer back-
ing store operations only when main memory is in scarce
supply [Sta82]. Moreover, the variety and quantity of

paring
512, 1024, 2048, or 4096
128- 84K
direct or associative
unused portions of pages
offline reorganization*
Atlas (1962)[KEL82]
VAX-11

shorter than the time to access backing store, these
objects should never be paged out. By segregating short-
lived objects from permanent ones, Generation Scaven 9-
ing permits them to be locked in main memory. Table 3
summarizes the obstacles that advanced personal comput-
ers pose for a paged virtual memory, and the solutions
that SOAR has adopted. BS [UnP83] and the DEC
VAX/Smalltalk-80 system {BaS83] use paging.

* While BS is the first paging Smaloliline reorganization of the virtual space iBis83],
object swapping systems starting with OOZE did reorganizations regularly ling83].

The OOZE virtual memory system for Smalltalk-76 solved this problem but incurred
other costs ling83 I.

]Y38

Table 3. Paging problems and solutions.
problem SOAR solution
internal fragmentation
address size
paging short-lived objects

description
1 object / page
need 64K 50 byte objects
page faults for dead objects

offline reorganization
big addresses (228 words)
segregation by age,
don't page new ones

5. Automatic Storage Reclamation for Advanced
Personal Computers

Advanced personal computers depend on efficient
automatic storage reclamation. For example, our
Smalltalk-80 system allocates a new object every 80
instructions. This is consistent with Foderaro's results
for a few voracious Lisp programs [FoF81]. Since the
total size of the system was in an equilibrium for these
measurements, the reclamation rate must match the allo-
cation rate. The mean dynamic object size is 70 bytes
long. Thus, 7/8 byte must be reclaimed for every
instruction executed.

Let's examine several garbage collection algorithms
and evaluate their suitability for advanced personal com-
puters. Where possible, we use performance figures from
actual implementations of these algorithms. Table 4
summarizes the hardware configurations of these systems.
The Xerox Dorado Smalltalk-80 system is closest to an
advance personal computer; when we try to compare
results we shall normalize to that speed. For example the
bandwidth imposed on the BS II storage allocator is

70 bytes 1 object 9000 bytscodes = 7800 bytes
1 object X '80 instructions X second ~scond"

If we scale this up to the speed of the Xerox Dorado sys-
tem, the storage allocation rate exceeds 100 Kb/s.

This is unacceptable.
There are many automatic storage reclamation algo-

rithms [CohS1]. They can be divided into two families:
those that maintain reference counts, and those that
traverse and mark live objects. In the next few sections,
we examine several reclamation algorithms and discuss
their suitability for advanced personal computers.

6. Reference Counting Automatic Storage Recla-
mation Algorithms

Reference counting was invented in 1960 [Co160] and
has undergone many refinements [Knu73, StaS0]. The
central idea is to maintain a count of the number of
pointers that reference each object. If an object's
reference count should fall to zero, the object is no longer
accessible and its space can be reclaimed.

6.1. Immediate Reference Counting
Immediate reference counting adjusts reference

counts on every store instruction and reclaims an object
as soon as its count drops to zero. Both the Dorado
Smalltalk-80 system iGoR83] and LOOM [KaK83, StaB2]
reclaim space with this algorithm. Compaction is han-
dled separately and typically causes a pause of 1.3
seconds every 1 to 20 minutes on a SUN.

Table 4. Hardware Characteristics
System CPU
Dorado ST
Franz Lisp
Dolphin ST
VAX/Smalltalk-80
BS II

raw speed Relative ST speed main memory
Dorado 3 MIPS 13 2 Mb
VAX-II/780 1 MIPS n.a. 3 Mb
Dolphin 0.3 MIPS 1.5 1.5 Mb
VAX-11/780 1 M1PS 1.0 3 Mb
SUN 1.5 0.4 MIP 1.0 2 Mb

Jon L. White was one of the first researchers to
exploit the overlap between the functions of virtual
memory and garbage collection, and he proposed that
address space reclamation was obsolete in a virtual
memory [Whi801. He pointed out that as long as refer-
enced objects were compacted into main memory, dead
objects would be paged out to backing store. This stra-
tegy may have adequate performance as far as CPU time
and main memory utilization, but it demands too much
from the backing store in a Smalltalk-80 system. Even if
a 100 Mb backing store could keep up with the 100
Kb/sec allocation bandwidth it would fill up in less than
an hour.

l{IOMb
disk 20 minutes. lOOKb trash

second

Counting references takes time. For each store, the
old contents of the cell must be read so that its referent's
count can be decremented, and the new content's
referent's count must be increased. This consumes 15%
of the CPU time [Deu83, UnP83]. When an object's
count diminishes to zero, it must be scanned to decre-
ment the counts of everything it references. This recur.
sire freeing consumes an additional 5% of execution time
[Deu82b, UnP83]. Thus, the total overhead for reference
counting is about 20%. This is acceptable for personal
computers, but deferred reference counting and Genera-
t ion Scavenging (discussed below) use much less.

This algorithm cannot reclaim cycles of unreachable
objects. Even though the whole cycle is unreachable,
each object in it has a nonzero count. Deutsch [Deu83]
believes that this limitation has hurt programming style

LS~

on the Xerox Smalltalk-80 system (which employs refer-
ence counts), and Lieberman [LiI~ has also stated that
circular structures are becoming increasingly important
for AI applications. The advantage of immediate refer-
ence counting is that it uses the least amount of memory
for dynamic objects-about 15 Kb when running the
Smalltalk-80 macro benchmarks. However, its inability
to reclaim circular structures remains a serious drawback
for advanced personal computers.

6.2. Deferred Reference Counting
The Deutsch-Bobrow deferred reference counting

algorithm reduces the cost of maintaining reference
counts. Three contemporary personal computer program-
ming environments use this algorithm: Cedar Mesa,
InterLisp-D (both on Dorados), and an experimental
SmaUtalk-80 system which furnished the performance
measurements quoted herein iDeS84] . The Deutsch-
Bobrow algorithm diminishes the time spent adjusting
reference counts by ignoring references from local vari-
ables [DeB76]. These uncounted references preclude rec-
lamation during program execution. To free dead
objects, the system periodically stops, and reconciles the
counts with the uncounted references. On a typical per-
sonal computer the algorithm requires 25 Kb more space
than immediate reference counting, and causes 30 ms
pauses every 500 ms.

Baden's measurements of a Smalltalk-80 system sug-
gest that this method saves 90% of the reference count
manipulation [Bad82]. Deferred reference counting
automatic storage reclamation spends about 3% of the
total CPU time manipulating reference counts, 3% for
periodic reconciliation, and 5% for recursive freeing.
Thus, deferred reference counting uses about half the
time of simple reference counting.

Although more efficient than immediate reference
counting, deferred reference counting is no better at
reclaiming circular structures. This is its biggest draw-
back.

7. Marking Automatic Storage Reclamation Algo-
rithms

Marking reclamation algorithms collect garbage by
first traversing and marking reachable objects and then
reclaiming the space filled by unmarked objects. Unlike
reference counting, these algorithms reclaim circular
structures.

7.1. Mark and Sweep
The first marking storage reclamation algorithm,

mark and sweep, was introduced in 1960 [McC60]. It has
many variations ICoh81,Knu73,Sta80], and is used in
contemporary systems [FoF81]. After marking reachable
objects, the mark and sweep algorithm reclaims one
object at a time, with a sweep of the entire address space.
Since the marking phase inspects all live objects, and the
sweeping phase modifies all dead ones, this algorithm can
be inefficient. Fateman has found that some LISP pro-
grams running on Franz Lisp spend 25% to 40% of their

time on garbage collecting [Fat83] and require about 1.9
Mb for dynamic objects (compared to about 1 Mb for
static objects).

The marking phase inspects every live object and
thereby causes backing store operations. Foderaro found
that, for some LISP programs, hints to the virtual

memory system could reduce the number of page faults
for a Franz mark and sweep from 120 to 90 [FoF81].
The result is a 4.5 second pause every 79 seconds. This is
unacceptable for an interactive personal computer.

7.2. Scavenging Live Objects
The costly sweep phase can be eliminated by moving

the live objects to a new area, a technique called scaveng-
ing. A scavenge is a breadth-first traversal of reachable
objects. After a scavenge, the former area is free, so that
new objects can be allocated from its base. In addition to
the performance savings, a scavenging reclaimer also com-
pacts, obviating a separate compaction pass. Scavenging
algorithms must also update pointers to the relocated
objects.

Automatic storage reclamation algorithms that
scavenge include Baker's semispace algorithm [Bak77],
Ballard's algorithm [BaS83], Generation Garbage Collec-
tion [LiH], and Generation Scavenging. Baker's algorithm
divides memory into two spaces and scavenges all reach-
able objects from one space to the other. BaUard imple-
mented this algorithm for his VAX]Smalltalk-80 system
and observed that many objects were long-lived. The
addition of a separate area for these objects resulted in a
substantial performance improvement by eliminating the
periodic copy of them. Ballard's system has 600 Kb for
static objects, a 512 Kb object table, and two 1 Mb sem-
ispaces for dynamic objects. It spends only 7% of its
time reclaiming storage, including sweeping the object
table to reclaim entries.

Generation Garbage Collection [LiH] exploits the
observation that many young objects die quickly and gen-
eralizes Baker's algorithm by segregating objects into
generations, each within its own pair of semispaces. Each
generation may be scavenged without disturbing older
ones, permitting younger generations to be scavenged
more often. This reduces the time spent scavenging
older, more stable objects. At present, there are no pub-
lished performance data on this algorithm.

The above scavenging algorithms incur hidden costs
because they avoid pauses by interleaving scavenging
with program execution. As a consequence, forwarding
pointers are required and each load instruction must
check for and possibly follow such a forwarding pointer.
The algorithms that segregate objects into generations
must maintain tables of references from older to younger
objects. The burden of maintaining these tables falls on
some of the store instructions.

8. The Generation Scavenging Automatle Storage
Reclamation Algorithm

Generation Scavenging arose from our attempts find
an efficient, unobtrusive storage reclamation algorithm

160

for Berkeley Smalltalk. BS originally reclaimed storage
by reference counting. Measurements of object lifetimes
proved that young objects die young and old objects con-
tinue to live. We then designed Generation Scavenging to
exploit that behavior and substituted it for reference
counting in Berkeley Smalltalk. The result was an eight-
fold reduction in the percentage of time spent reclaiming
storage-from 13% to 1.5%. In addition, the intrinsic
compaction provided by scavenging made it possible to
eliminate the Object Table and its concomitant indirec-
tion. After these changes, BS ran 1.7 times faster than
before.

8.1. O v e r v i e w o f Generatlon Scavenging Algo-
r i t h m

Each object is classified as either new or old. Old
objects reside in a region of memory called the old area.
All old objects that reference new ones are members of
the remembered set. Objects are added to this set as a
side effect of store instructions. (This checking is not
required for stores into local variables because stack
frames are always new.) Objects that no longer refer to
new objects are deleted from the remembered set when
scavenging. All new objects that are referenced must be
reachable through a chain of new objects from the (old)
objects in the remembered set (and virtual machine regis-
ters). Thus, a traversal in new space, starting at the
remembered set can find all live new objects.

There are three areas for new objects:
• NewSpace, a large area where new objects are

created,
• PastSurvivorSpace, which holds new objects that

have survived previous scavenges, and
• FutureSurvivorSpace, which is empty during pro-

gram execution.
A scavenge moves live new objects from NewSpace and
PastSurvivorSpace to FutureSurvivorSpace, then inter-
changes Past and FutureSurvivorSpace. At this point, no
live objects are left in NewSpace, and it can be reused for
creation. The scavenge incurs a space cost of only one
bit per object. Its time cost is proportional to the
number of live new objects and thus is small. If a new
object survives enough scavenges, it moves to the old
object area and is no longer subject to online automatic
reclamation. This promotion to old status is called tenur-
ing. Table 5 summarizes the characteristics of ~he two
generations forGeneration Scavenging.

8.2. Comparison of Generation Scavenging With
Other Scavenging Algorithms

Generation Scavenging most resembles Ballard's
scheme:
• It segregates objects into young and old generations.
• It copies live objects instead of sweeping dead

objects.
• I t reclaims old objects offline.
Generation Scavenging differs from Ballard's Semispaees
and Lieberman-Hewitt 's Generation Garbage Collection.
Unlike those algorithms, Generation Scavenging
• conserves main memory by dividing new space into

three spaces instead of two.
• is not incremental. Instead, the pauses introduced

by Generation Scavenging are small enough to be
unnoticeable for normal interactive sessions. (They
are noticeable in real-time applications such as ani-
mation.) This eliminates the checking needed for
load instructions.

8.3. Evaluating Generation Scavenging
The Smalltalk-80 macro benchmarks [McC83] consist

of representative activities like compiling and text edit-
ing. We measured the performance of Generation
Scavenging in BS II while running these benchmarks.
Table 6 shows the results.

CPU Time Cost: Our measurements of BS lI show
that Generation Scavenging requires only 1.5% of the
total (user CPU) time. This is four times better than its
nearest competitor, Ballard's modified semispaces, which
takes about 7%.

One reason that Generation Scavenging looks so good
is that BS executes programs more slowly than some
other Smalltalk-80 systems. Based on bytecode mix
measurements, Deutsch has estimated that a 10 Mhz
68000 with no wait states could execute Smalltalk-80
bytecodes no faster than three times the Dolphin's rate
[Deu82a]. Then the bytecode execution rate per CPU
second would be

4.5 Mbytecodes X 1.5 Dolphin speed × 3 optimal 68K speed
280 BS seconds BS speed Dolphin speed

72000 bytecodes
second

Table 5. Generations in Generation ScavenEing.
contents volatile obiects
residence
space size
location
created by
reclaimed by
reclaimed every
reclamation takes

volatile objects
new space
200 Kb*
main memory
instantiation
scavenging
16 sec
.160 sec

permanent objects
old space
940 Kb
demand paged
tenuring
mark-and-sweep
3 - 8 hrs
5 rain

* 140 Kb for New area + 2 * 28Kb for survivors

The analogous upper bound for scavenging is approxi-
mately 10 #s per scavenged word. (Each scavenged word
must be copied and later forwarded.) Since there are an
average of 4800 words of survivors per scavenge, each
scavenge would take 48 ms. Hence the CPU time cost for
scavenging over our experimental run of the benchmarks
on such a system would be

TItS 48 X 32 scavenges
scavenge ~ 2.5%

4.5 Mbytccodcs
72000 bytecodes

second

This is still less than third the measured CPU time of 9%
for deferred reference counting.

M a i n M e m o r y C o n s u m p t i o n : Although each of
the three object areas is about 140 Kb, the survivor areas
only hold 56 Kb, and the rest need not be resident.
Thus, the primary memory cost for dynamic objects is
200 Kb, about 10% of the BS main memory. If we used
Baker semispaces with the same scavenging rate, each
space would need to be 140Kb + 28Kb, for a total of 360
Kb.

Back ing Store Operat ions : BS H employs offline
depth-first reorganization for the old objects, and since
new objects are always created in the same area, it can
remain in main memory. Unfortunately, Unix on the
SUN 1.5 does not implement the system call which would
lock down this area. Thus, the first six scavenges caused
283 minor page faults (page reclaims), and the rest of
them caused four. With a working set of 930 Kb, 60

major page faults occurred over the entire computation.
Pauses: Except for the page faulting during first six

scavenges (see above), the pauses were small and mostly
unobtrusive, averaging 150 ms. The longest pause was
only 330 ms. About 15% of the pause time was spent in
the Unix kernel on unrelated overhead. This algorithm's
performance meets our requirements.

8.4. P r e m a t u r e P r o m o t i o n : T h e T e n u r i n g Prob-
lem

To minimize scavenging time, new objects that have
survived several scavenges are awarded old status, with
the expectation that their usefulness will continue.
Sometimes this is not the case, and a promoted object
soon becomes unreachable and wastes old space. (Recall
that old objects are reclaimed offline.) We call this the
tenuring problem. In our sample run, there were 9100
bytes of objects that were promoted but then died. This
is 0.2% of all garbage collected in the run. Fur ther
research could reduce this number with
• a stricter tenuring policy,
• an adaptive tenuring policy, or
• hints from the executing program.

9. S u m m a r y o f R e c l a m a t i o n A l g o r i t h m s
Table 7 summarizes our results. Deutsch-Bobrow

deferred reference counting and Generation Scavenging
perform well enough for an advanced personal computer.

= , .

Table 6. Performance of Generation Scavenging
total instructions executed
amount of storage reclaimed
amount of tenured storage
number of checked stores
number of remembered objects
number of scavenges
mean length of survivors
total user CPU time
total Real time
real time scavenging
user time scavenging
time checking stores
max old space used
max new space
max survivor space
total size
resident set size
total page faults
min pause time*
median pause time*
mean pause time*
90th %lie pause time*
max pause time*
mean time between scavenges

4500 k
3900 kb
9.1 kb
190 k
320
32
4 .8Kword
280 s.
500s.
1.8%
1.5%
0.1%
940Kb
140Kb
2 8 K b
1800Kb
930Kb
61
90ms
150ms
160ms
220ms
330ms
16 seconds

* excluding first six scavenges, which thrashed because Unix would
not let us lock down the new area.

Generation Scavenging is superior to deferred reference
counting because it
• reclaims circular structures,
• includes compaction, and
• runs in less than a fourth of the CPU time.

Copying survivors is much cheaper than scanning
corpses.

Careful consideration of the virtual memory system is
essential. Generation Scavenging combines these lessons
to meet stringent performance goals for CPU time (2%),
primary memory (200kb), backing store operations

page it
immed ref. count

(compaction)
deferred ref. count

{compaction)
mark and sweep
Ballard
Generation Scavenging

Table 7. Summary of reclamation strategies.
CPU time main memory paging

for dynamic I/Os
objects

? 15 Kb ~50 /s
15% - 20% 15 Kb

pause pause
time interval
{see) {see)

11% 40 Kb

? 0 co
1.3 60- 1200

? 0.030 0.30
1.3 60- 1200

25% - 40% 1900 Kb 00/go 4.5 74
7% 2000 Kb 0 0 oo
1.5% -. 2.5% 200 Kb 1.2/s 0.38 30

10. Architectural support for Generation
Scavenging

Our group at Berkeley is building a high perfor-
mance microchip computer system for the Sma]ltalk-80
system, called Smalltalk On A RISC (SOAR) [Pat83].
We are testing the hypothesis that the addition of a few
simple features can tailor a simple architecture to
Smalltalk. The SOAR chip supports virtual memory
with restartable, fixed sized instructions and a page fault
interrupt [KIF83}. An off-chip translation look-aside
buffer (TLB) translates addresses and maintains refer-
enced information. The SOAR host board hides the TLB
access time in memory access time [BID83]. Thus 'the sili-
con cost for virtual memory is about 20 support chips for
the TLI3.

To support Generation Scavenging, all pointers
include a four-bit tag. When a store instruction stores a
younger pointer into an older object, a special trap
occurs. The software trap handler then remembers the
reference. The tag-checking PLA has 8 inputs and one
output, and occupies about 0.1% of the total chip area.
The cost of the extra control logic to handle the trap is
harder to measure.

11. Conclusions
The combination of generation scavenging and pag-

ing provides high performance automatic storage reclama-
tion, compaction, and virtual memory. It has proven its
worth daily in Berkeley Smalltalk, which has supported
the SOAR compiler project, architectural studies, and
text editing for portions of this paper.

High performance storage reclamation relies oll two
principles:
• Young objects die young. Therefore a reclamation

algorithm should not waste time on old objects.
• For young objects, fatalities overwhelm survivors.

{l.2/s), and pause times (I/6 - 1/3 s).

12. Acknowledgements
I gratefully acknowledge the essential contributions

of these people: Pe te r Deutsch, who first suggested
storage reclamation based on two generations, S tony
Ballard, who showed it could be done by building the
first non-reTerence-counted Smalltalk system, Ted
Kaehler , who shared his insight into Smalltalk-80
memory issues, Glenn Krasner, who provided ideas and
information, Allene Parker, who prepared this paper for
the camera's eye, and most of all, David Patterson,
who constantly challenged me first to prove the worth of
Generation Scavenging, and then to communicate these
results.

This effort was funded in part by an IBM graduate
student fellowship and by Defense Advance Research
Projects Agency (DoD), Order No. 3803, monitored by
Naval Electronic System Command under Contract No.
N00039-81-K-0251.

13. References
[Bad82] S. Baden, High Performance Storage

Reclamation in an Object-Based Memory
System, Master's Report, Computer Science
Division, Department of E.E.C.S, University
of California, Berkeley, Berkeley, CA, June 0,
1982.

[Bak77] H.G. Baker, List Processing in Real Time on
a Serial Computer, A.I. Working Paper 139,
MIT-AI Lab, Boston, MA, April, 1977.

[BaS83] S. Ballard and S. Shirron, The Design and
Implementation of VAX/Smalltalk-80, in
Smalltalk-80: Bits of History, Words of Advice,
G. Krasner (editor), Addison Wesley,
September, 1983, 127-150.

163

[BeF741

[Bin83]

[B~831

[CohSl]

[Co160]

[Den70]

[DeB76]

[DeuS2a]

[Deu8.2b]

[Deu83]

IDES84]

[Fat83]

[FoF81]

IGOR83]

[ing831

W. Becket and D. Fagen, Throw Back the
Little Ones, in Throw Back the Little Ones,
Steely Dan, (~) American Broadcasting Music,
Inc. (ASCAP), Los Angeles, CA, 1974.
R. Blau, Paging on an Object-Oriented
Personal Computer, Proceedings of the ACM
SIGMETRICS Conference on Measurement
and Modeling of Computer Systems,
Minneapolis, MN, August, 1983.
R. Blomseth and H. Davis, The Orion Project
-- A Home for SOAR, in SmaUtalk on a RISC:
Architectural Investigations, D. Patterson
(editor), Computer Science Division,
Deptartment of E.E.C.S., University of
California, Berkeley, CA, April, 1983, 64-109.
J. Cohen, Garbage collection of Linked Data
Structures, ACM Computing Surveys 13,3
(Sept. 1981), 341-367.
G. E. Collins, A Method for Overlapping and
Erasure of Lists, Comm. of the ACM 3,12
(1980), 655-6~7.
P. J. Denning, Virtual Memory, Computing
Surveys 2,3 (September, 1970), 153-189.
L. P. Deutsch and D. G. Bobrow, An Efficient
Incremental Automatic Garbage Collector,
Comm. of the ACM 19,9 (September 1976),
522-526.
L. P. Deutsch, An Upper Bound for
Smalltalk-80 Execution on a Motorola 68000
CPU, private communications, 1982.
L. P. Deutsch, Storage Reclamation, Berkeley
Smalltalk Seminar, Feb. 5, 1982.
L. P. Deutsch, Storage Management, private
communications, 1983.
L. P. Deutsch and A. M. Schiffman, Efficient
Implementation of the Smalltalk-80 System,
Proceedings of the l l th Annual ACM SIGACT
News-SIGPLAN Notices Symposium on the
Principles of Programming Languages, Salt
Lake City, Utah, January, 1984.
R. Fateman, Garbage Collection Overhead,
private communcation, August, 1983.
J. K. Foderaro and R. J. Foreman,
Characterization of VAX Macsyma,
Proceedings of the 1981 ACM Symposium on
Symbolic and Algebraic Computation,
Berkeley, CA, 1981, 14-19.
A. J. Goldberg and D. Robson, Smalltalk-80:
The Language and Its Implementation,
Addison-Wesley Publising Company, Reading,
MA, 1983.
D. H. H. Ingalls, The Evolution of the
Smalltalk Virtual Machine, in Smailtatk-80:
Bits of History, Words of Advice, G. Krasner
(editor), Addison Wesley, September, 1983, 9-
28.

[KaK83]

[KEL82]

[KlF83]

[Knu73]

[LoK82]

[McC83]

[McC60]

{eat8a]

[Shea31

[Stas2l

[stas0]

[ThaSl]

lUnP83]

T. Kaehler and G. Krasner, LOOM-Large
Object-Oriented Memory for Smalltalk-80
Systems, in Smalitalk-80: Bits of History,
Words of Advice, G. Krasner (editor),
Addison-Wesley, Reading, MA, 1983, 249.
T. Kilburn, D. B. G. Edwards, M. J. Lanigan
and F. H. Sumner, One-Level Storage System,
in Computer Structures: Principles and
Examples, D. P. Siewiorek, C. G. Bell and A.
Newell (editor), McGraw-Hill, New York, NY,
1982, 135-148. Originally in IRE
Transactions, EC-11, vol 2, April 19162, pp
223-235.
M. Klein and P. Foley, Preliminary SOAR
Architecture, in Smalltaik on a R ISC:
Architectural Investigations, D. Patterson
(editor), Computer Science Division,
Deptartment of E.E.C.S., University of
California, Berkeley, CA, April, 1083, 1-24.
D. Knuth, The Art of Computer Programming,
Addison-Wesley, Reading, Mass., 1973.
H. Lieberman and C. Hewitt, A Real-Time
Garbage Collector Based on the Lifetimes of
Objects, Comm. of the ACM 26,6,419-429.
W. Lonergan and P. King, Design of the B
5500 System, in Computer Structures:
Principles and Examples, D. P. Siewiorek, C.
G. Bell and A. Newell (editor), McGraw-Hill,
New York, NY, 1982, 129.-134. Originally in
Datamation, vol. 7, no. 5, May 1961. pp 28-32.
K. McCall, The SmaUtalk-80 Benchmarks, in
Smalltalk 80: Bits of History, Words of
Advice, G. Krasner (editor), Addison-Wesley,
Reading, MA, 1983, 151-173.
J. McCarthy, Recursive Functions of
Symbolic Expressions and Their Computation
by Machine, I, Comm. of the ACM 3(1960},
184-195.
D. A. Patterson, Smalitalk on a RISC:
Architectural Investigations, Computer Science
Division, University of California, Berkeley,
CA, April 1983. Proceedings of CS292R.
B. Shell, Environments f o r Exploratory
Programming, Datamation, February, 1983.
J. W. Stamos, A Large Object-Oriented
Virtual Memory: Grouping Strategies,
Measurements, and Performance, Xerox
technical report, SCG-82-2, Xerox, Pals Alto
Research Center, Pals Alto, CA, May 1982.
T. A. Standish, Data Structure Techniques,
Addison-Wesley, Reading, Mass., 1980.
A. J. Thadhani, Interactive User Productivity,
IBM Systems Journal 20,4 (1981), 407-421.
D. M. Ungar and D. A. Patterson, Berkeley
Smalltalk: Who Knows Where the Time
Goes?, in Smalltalk-80: Bits of History, Word

[UBF84]

[Whi80]

of Advice, G. Krasner (editor), September,
1983, 189.
D. Ungar, R. Blau, P. Foley, D. Samples and
D. Patterson, Architecture of SOAR:
Smalltalk on a RISC, Eleventh Annual
International Symposium on Computer
Architecture, Ann Arbor, MI, June, 1984.
J. L. White, Address/Memory Management
For A Gigantic LISP Environment or, GC
Considered Harmful, Conference Record of the
1980 LISP Conference, Redwood Estates, CA,
1980, 119-127.

Appendix A. Generation Scavenging Details
We present the algorithm top-down, in pidgin C:

struct space {
word t *firstWord;[* start of space */
int size; /* number of useawords in space */

};
struct object {

int size;
int age;
boolean isForwarded;
boolean isRemembered;
union {

*contents[];
*forwardingPointer;

};
};

struct object
struct object

struct space

struct object
int

/ ,

, /

NewSpace, PastSurvivorSpace, FutureSurvivorSpace, OldSpace;

*Rememb eredSetContents[MaxRemembered];
RememberedSetSize;

The main routine, generationScavenge, first scavenges the new
objects immediately reachable from old ones. Then it
scavenges those that are transitively reachable.
If this results in a promotion, the promotee gets remembered,
and it first scavenges objects adjacent to the promotee,
then scavenges the ones reachable from the promoted.
This loop continues until no more reachable objects are left.
At that point, PastSurvivorSpace is exchanged with FutureSurvivorSpace.

Notice that each pointer in a live object is inspected once and
only once. The previousRememberedSetSize and
previousFutureSurvivorSpaceSize variables ensure that no object
is scanned twice, as well as detecting closure.
If this were not true, some pointers might get forwarded twice.

• enerationScavenge 0

int previousR ememberedSetSize;
int previousFut ureSurvivorSpaceSize;

previousRememberedSetSize ~- 0;
previousFutureSurvivorSpaceSize -~ 0;

while (TRUE) {
scavengeR ememberedSetStar tingAt(previousRememberedSetSize);

165

if (previousFutureSurvivorSpaceSize ~ FutureSurvivorSpace.size)
break;

previousRememberedSetSize -~ RememberedSetSize;
scavengeF utureSurvivorSp aceStartingAt(previousFutureSurvivorSpace.size);
if (previousRememberedSetSize ~ - RememberedSetSize)

break;

previousFutureSurvivorSpaceSize ~- FutureSurvivorSpace.size;

ex change(PastSurvivorSpace, FutureSurvivorSpace);

*

, /

scavengeRememberedSetStartingAt(n} traverses objects in the remembered
set starting at the nth one. If the object does not refer to any new
objects, it is removed from the set. Otherwise, its new referents
are scavenged.

scavengeRememberedSetStartingAt(dest)
int dest;
{

int source;

for (source -~ dest; source <~ RememberedSetSize; + + source)
if (scavengeReferentsOf(RememberedSet[sourcel)} (

RememberedSetContents[dest+ +] ~-
RememberedSetContents[source];

}
else

resetRememberedFlag(RememberedSetContents[sourcel);
RememberedSetSize -~- dest;

*

, /

scavengeFutureSurvivorSpaceStarting, Atln) does a depth-first
traversal of the new objects starting at the one at the nth word
of FutureSurvivorSpace.

scavengeF utureSurvivorSpaceStartingAt(n)
int n;
{

struct object *currentObject;
boolean dontCare;

for(;
n <~ FutureSurvivorSpace.size;
n + - ~ sizeOfObject(currentObject))

dontCare ~ scavengeReferentsOf(
currentObject -~ FutureSurvivorSpace.firstWord[n]);

*

*/

scavengeReferentsOf(referrer) inspects all the pointers in referrer.
If any are new objects, it has them moved to FutureSurvivorSpace,
and returns truth. If there are no new referents, it returns falsity.
For simplicity here, an object is just an array of pointers.

165

scavengeReferentsOf{referrer)
struct object *referrer;
{

int i;
boolean foundNewReferrent;
struct object *referent;

foundNewReferent .~- FALSE;
for (i = 0; i < referrer->size; i+ +) {

referrent ~ referrer.contents[i];
if (isNew(referrent)) {

foundNewReferrent --~ TRUE;
if (!isForwarded(referrent})

copyAndForwardObject{referent);
referrer.contents[i] ~- referent->forwardingPointer; }

}
return (foundNewReferrent);

*

* copyAndForwardObject(obj) copies a new object either to
* FutureSurvivorSpace, or if it is to be promoted, to OldSpaee.
* It leaves a forwarding pointer behind. , /

copyAndForwardObject(oldLocation)
struct object *oldLocation;
{

struct object *newLocation;

if (oldLocation->obj age < MaxAge} (
+ + oldLoeation- > obj age;
newLoeation -~ copyObjectToSpaee(oldLocation,

Fut ureSurvivorSpace);
}
else

newLocation ~ copyObjectToSpace(oldLocation, OldSpace);

oldLocation->obj_forwardingPointer -~- newLocation;

oldLocation->obj forwarded -~-~-- TRUE;

157

