
Contents

1 Intro 1

2 Representing the scalar C data types 1

3 Representing the C data structures 1

4 C callout mechanism 2

5 Conclusion 3

1 Intro

Hello, my name is Dmitry Matveev, I am a GSoC 2010 student. I am working
on the project named �Progress Towards a Cross-Dialect Smalltalk FFI� (http:
//gsoc2010.esug.org/projects/ffi).

I've read the CObject/Alien documentation and I've outlined the major FFI
components. FFI should have tools for:

• representing the scalar C data types;

• representing the C data structures;

• C callouts.

2 Representing the scalar C data types

The FFI system should have a set of the classes representing the basic C scalar
data types - integers, characters, etc. Each class has to know:

1. A size in bytes required to store the C variable of this type;

2. A way how to serialize the appropriate Smalltalk data type into the actual
bytes acceptable by a C-side code;

3. A way how to build the appropriate Smalltalk variable from the actual
bytes.

There should not be any problems, everything is obvious and it's easy to imple-
ment. GNU Smalltalk already has the set of such classes.

3 Representing the C data structures

The FFI system should have a routine for representing the complex C data
structures in Smalltalk using the scalar data classes from the p.2. As far as I
understand, in the Alien user has to create a class representing a structure, and

1

http://gsoc2010.esug.org/projects/ffi
http://gsoc2010.esug.org/projects/ffi


a set of acessors that will read/write the data from the raw byte array using
the di�erent o�sets for the appropriate structure �elds (please correct me if I'm
wrong). In GNU Smalltalk there is a more convenient way of representing the
C structures:

CStruct subclass: AudioInfo [

<declaration: #((#play #{AudioPrinfo} )

(#record #{AudioPrinfo} )

(#monitorGain #uLong)

(#yyy (#array #uLong 4)))>

<category: 'C interface-Audio'>

]

This example is taken from the GNU Smalltalk manual. The ClassDescription
subclass is used here to specify the structure representation via the <declaration:>;
the appropriate �eld accessors will be generated automatically using it. I like
this way and I am sure that it's possible to implement the same approach in
Squeak.

4 C callout mechanism

GNU Smalltalk (and the FFI for Squeak) both use the primitive-like syntax, i.e:

ExternalInterface >> system: aString

<cCall: 'system' returning: #int args: #(#string)>

The code is self explanatory. Broadly speaking, the following actions are
performed here in my understanding:

1. The virtual machine lookups the address of the C function by its name
(via the dlsym() in Unix or the GetProcAddress() in Windows) in all
the loaded dynamic libraries (dlopen()/LoadLibrary());

2. The virtual machine parses the argument string, extracts the method pa-
rameters and converts it into the plain C format according to the speci�ed
types;

3. The virtual machine pushes the arguments into the stack (platform-dependent
operations here, lib� rocks) and calls the function by it's address;

4. The virtual machine converts the return value to the Smalltalk type and
returns back the control.

Squeak and GNU Smalltalk already have the mechanisms for it, so I think it
may be enough just to provide a dialect-independent way for C callouts based
on the top of the existing provided opportunities.

2



The syntax described above forces the programmer to create a new method
each time he wants to bind a new C function. Also, the programmer has to
have a class where he (or she) will de�ne these methods. It is not always good,
so I think that the cool Alien's ability of the "in-place" C callouts should also
be included into the new FFI.

5 Conclusion

This is my understanding of the task, and I will try to implement the project
according this vision. Any your comments are warmly welcomed!

Dmitry.

3


	Intro
	Representing the scalar C data types
	Representing the C data structures
	C callout mechanism
	Conclusion

