
TPA#1573154.02

Extending the Squeak Virtual Machine

Andrew C. Greenberg

NetWolves Technology Corporation, Inc.

Why Extend Squeak?
Extending Squeak’s virtual machine assumes an answer to an

important threshold question: Why do it? Squeak is an exquisite and highly
portable programming environment that is capable of performing most
things a programmer might want to do. Squeak has robust memory
management and debugging tools that protect the system from catastrophic
errors and inform programmers as to their cause. Squeak supports
Smalltalk, and therefore an object-oriented programming paradigm that
results in highly reusable and extendable code. Squeak programs are
remarkable in their capacity to perform complex applications across many
platforms – identically pixel-for-pixel.

In contrast, each virtual machine (“VM”) extension bypasses the
Squeak object memory model. Therefore, the extension reintroduces the
possibility of hardware crashes due to memory leaks, hanging pointers,
address errors and the panoply of things that can go wrong in traditional
programming. VM extensions often rely on fixed assumptions about the
internal structure of the objects on which they operate, and thus limit the
scope of reusability and extensibility of objects that depend on the
extension. Otherwise routine operations on Smalltalk objects so extended
can result in strange and unpredictable behaviors. Finally, VM extensions
tend to introduce machine dependencies.

Notwithstanding all of this, however, there are sometimes compelling
reasons to extend the Squeak VM. Among these are to achieve
improvements in performance and to obtain enhanced functionality not
otherwise possible without an extension.

Squeaking out more speed
Squeak programs are not compiled to native machine language, but

are compiled to an intermediate representation called bytecodes. Bytecodes
are interpreted by the Squeak VM, a computer program that is, in turn,
executed on the target machine. Because of this intermediate processing,
the overall system typically runs slower, sometimes much slower, than a
corresponding C language program that was directly compiled to machine
language. Additionally, the Squeak object model carries an unavoidable
overhead, since virtually every program operation requires some machine
resources to support the Smalltalk message sending and memory
management semantics.

In most cases, benefits in portability, power and safety that derives
from the Squeak design decisions may substantially outweigh any cost in

2

Extending the Squeak Virtual Machine

TPA#1573154.02

speed and other resources. Moreover, as costs plummet for increasingly
high-speed processors, demand for “on the metal” speed diminishes.
Nevertheless, there are times when the need for speed is paramount – where
the lack of speed equates to a lack of functionality.

Modern software design methodologies focus on postponing attention
to performance issues until later stages of the system life cycle: “Make it
work, make it right, then make it fast.” Once a working and sound model
of a system exists, traditional “tuning” solutions entirely within Smalltalk
often provide adequate performance solutions. Since programs tend to
spend the vast majority of their time executing tiny portions of its program
code, this approach can often yield excellent and efficient results while
permitting a programmer to focus energies on refining only small portions
of the code. Using a Squeak profiler to identify program bottlenecks,
particular method or methods can often be identified and improved to a
degree sufficient to satisfy a program’s requirements.

This approach works well particularly in view of Smalltalk’s object-
oriented infrastructure. A complete program can often be improved
enormously without making changes to the key program logic merely by
changing the internal representation and implementation of a single class.
Where bottlenecks are not so localized, a program can often be refactored to
facilitate speedup efforts. In other cases, straightforward speedups can be
obtained by specializing generalized system classes used by the program.
For example, a program using the Smalltalk Set classes can often be
improved by substituting (without changing the main code) another class
that efficiently exploits particular properties of the underlying data.

Sometimes, however, traditional tuning fails to provide speed-up
sufficient for an essential function. In such cases, replacing a performance
bottleneck with straight-line machine language may make possible
functionality that could not be adequately delivered otherwise.

Roaring like a mouse: new power and functionality.
Squeak is extraordinary. The standard image contains arbitrary

precision arithmetic, a comprehensive set of collection protocols, several
graphic user interface frameworks, a flexible 3D graphics engine, a reusable
web server, support for most traditional internet protocols and powerful
sound processing capabilities to name just a few of the key built-in
“goodies.” Underneath, Squeak provides a vast set of primitives providing
low-level access to many important machine functions.

Nevertheless, the functional capability of computers continues to
increase, and Squeak’s designers could not have anticipated every possible
need for a system-level primitive. Sometimes, the requirements for access
to low-level drivers or local operating system functionality is essential to
perform specific functions. Without the ability to extend Squeak, some
hardware might not be usable at all.

In other cases, an existing machine-specific or portable non-Smalltalk
library may already exist, providing specific capabilities that would be
necessary or helpful for a Squeak application. Particularly where the library
is of general utility and effectively maintained by others, it may be desirable
to code an extension for Squeak to provide direct access to the functionality

3

Extending the Squeak Virtual Machine

TPA#1573154.02

of that library, rather than diverting resources unnecessarily to re-invent the
wheel in Smalltalk.

These two issues, access to low-level drivers and access to already
existing non-Smalltalk libraries, are among the most common reasons for
using Squeak extensions.

Anatomy of an Extension
Squeak can be extended in various ways: by rewriting the interpreter,

by adding a numbered primitive or by adding a named primitive. The first
two require rebuilding the entire Squeak system. By far, the more flexible
and adaptable solution –and the primary subject of this chapter – are named,
or “pluggable” primitives. On most systems, these named primitives can be
implemented as shared libraries, such as Windows DLL libraries.

Once a plugin is made available to the VM using native operating
system conventions (in the MacOS, for example, by dragging plugin files
into certain folders), a Smalltalk method can call one of its primitives using
a specialized extension of the Smalltalk syntax for primitives. This method
(the calling method) and the primitive functions in the plugin communicate
in a specialized manner. Ultimately, the primitive returns control to Squeak
with a Smalltalk object as its answer.

The process of extending Squeak with named primitives entails the
following:

1. Creating a Smalltalk interface to the named primitives; and

2. Creating the Smalltalk plugin and its named primitives.

The Plugin Module
The plugin itself is an external library of machine-language routines,

including (i) one or more parameterless functions (the primitive functions)
each returning a 32-bit integer result, and (ii) a separate function taking a
single 32-bit parameter, which must be named setInterpreter. The
primitive functions may be generated in any manner convenient to the
author, but are typically generated from source code written in a subset of
Smalltalk called Slang, which is then translated to C and, in turn, compiled
to machine language.

The Interpreter Proxy
Prior to the first call of any primitive in the plugin, the Squeak VM calls

setInterpreter, passing to the plugin a pointer to a data structure known as
the interpreter proxy. The interpreter proxy includes pointers to various
internal data structures of the VM and to a subset of the VM’s internal
subroutines. The plugin saves the interpreter proxy in shared memory for
use by the primitives when communicating with Squeak.

Linkage Conventions for Primitive Functions
In operation, the Squeak VM represents every Smalltalk object as a 32-

bit integer value, called an oop. To call a primitive, the VM creates a stack

4

Extending the Squeak Virtual Machine

TPA#1573154.02

comprising oops representing the actual parameters and an oop representing
the object to which the primitive message was sent. The primitive will
thereafter either succeed or fail, and the fact of success or failure is recorded
in a global VM variable named successFlag. If the primitive succeeds,
the primitive is expected to pop the parameter and sender oops from the
stack, and to put (or leave) in its place a single oop representing the answer
to the message. If the primitive fails, then the primitive is expected to leave
the stack unchanged. Strict compliance with these linkage conventions is
essential to the proper operation of a primitive function.

Key to building extensions, therefore, is an understanding how Squeak
interacts with primitives, and vice-versa. To write a primitive, one must
understand in some detail how Squeak represents Smalltalk objects, the
workings of the Squeak memory model and how representations of
information can be shared between the VM and the primitive.

The rest of this chapter will discuss the mechanics of building a plugin
VM extension. We will begin with a brief introduction to the Slang
Smalltalk subset and how to use the Squeak translators and interpreters.
We will then detail how Squeak represents Smalltalk data objects and how
to use the interpreter proxy to access and manipulate that information. We
will then outline the mechanics of how a primitive function can use the
interpreter proxy to interact with the Squeak interpreter. Finally, we
conclude by putting these pieces together concretely with an example plugin
for manipulating large blocks of structured text.

Speaking in Slang

Although named primitive functions may be written in any language capable
of generating a shared library with the appropriate linkage conventions,
most are written in a subset of Smalltalk known as Slang. Slang code can
be written and tested in the Squeak development environment, and then
translated into C for compilation to a plugin.

A First Plugin
We will begin with a simple example, building a trivial pluggable

primitive that answers the SmallInteger instance 17. We begin by
creating a subclass of InterpreterPlugin.

InterpreterPlugin subclass: #ExamplePlugin
InstanceVariableNames: ‘’
classVariableNames: ‘’
poolDictionaries: ‘’
category: ‘VMConstruction-Plugins’

The Primitive Function

InterpreterPlugin provides the essential functionality for
constructing a plugin, including code to declare and initialize the interpreter

5

Extending the Squeak Virtual Machine

TPA#1573154.02

proxy (which will be stored in an instance variable named
interpreterProxy) and the infrastructure for translating the plugin to C.
To create our primitive function, open a browser on ExamplePlugin,
and add the following method

answerSeventeen
“Extension to answer the SmallInteger seventeen”
self export: true.
interpreterProxy

pop: 1
thenPush: (interpreterProxy integerObjectOf: 17)

The first statement has no effect when interpreted in Smalltalk, but
during translation, identifies the translated procedure as one with an external
label in the resulting library. The second statement pops the Smalltalk
context stack and then pushes an object handle (called an oop) representing
the SmallInteger instance 17.

.

The Smalltalk Interface
Once coded, this method can be tested by executing the following in

a workspace:

ExamplePlugin doPrimitive: ‘answerSeventeen’

to obtain the answer “17.” While hardly useful, this code
nevertheless illustrates how a primitive might be built. Once the extension
is built, the Smalltalk interface can be written. Primitives are conventionally
invoked by methods written substantially as follows:

answerSeventeen
“Answer the SmallInteger seventeen”
<primitive: ‘answerSeventeen’ module: ‘ExamplePlugin’>
^ExamplePlugin doPrimitive: ‘answerSeventeen’

This method, when executed, will seek to invoke the answerSeventeen
primitive, but when the primitive is not available or when the primitive is
available but fails during execution, it begins to interpret the remaining
Smalltalk code. Assuming that this method were added to class Foo, one
would test the primitive by executing the following in a workspace:

Foo new answerSeventeen

Since we have not yet built the plugin module, the primitive will fail,
and the result of the interpreted code will be answered.

Translating and Building the Plugin
Once you are satisfied that the Slang program is correct, a plugin

library can be created by executing the following:

ExamplePlugin translate

6

Extending the Squeak Virtual Machine

TPA#1573154.02

to invoke the Slang translator and generate a file,
“ExamplePlugin.c,” containing the C code corresponding to the Slang set
forth in class ExamplePlugin. That C program may then be compiled using
native tools to generate the plugin library.1

Slang: A Brief Summary

Expressions
Slang recognizes Smalltalk literals, including integers, characters,

symbols and strings, which are translated into corresponding C-language
constants. Symbols are translated into strings. Array literals are not
permitted. Assignments from expressions to identifiers are translated into
C-language assignments from the translation of the expression to the
corresponding identifier.

Unary Message Sends
Unary message sends are generally translated into a procedure call

of the procedure identified, passing the receiver as a parameter. Thus:

anObject frobosinate

is translated to

frobosinate(anObject);

Binary Message Sends
Binary message sends are generally translated into a procedure call

of the procedure identified, passing receiver as a first parameter, and the
rightmost argument as a second parameter. Thus:

anObject frobosinateWith: aWidget

is translated to

frobosinateWith(anObject, aWidget);

Keyword Message Sends
Keyword message sends are generally translated into a procedure

call of the procedure identified (by conacatenating all of the keywords
without colons), passing the receiver as a first parameter, and the remaining
arguments in order. Thus:

anObject frobosinateWith: aWidget andWith: anotherWidget

is translated to

frobosinateWithandWith(anObject, aWidget, anotherWidget);

1 Translated C code may depend upon one or more include files, copies of which are
stored in the standard Smalltalk image. You may generate these in text file form by
executing the expression, “InterpreterSupportCode writePluginSupportFiles,” in a
workspace.

7

Extending the Squeak Virtual Machine

TPA#1573154.02

Message Sends to Self or To InterpreterProxy
An exception to the general rules stated above occurs when

messages are sent to either of the “special objects” self or interpreterProxy.
Messages sent to self are translated as above, but without self as the initial
parameter. Messages sent to interpreterProxy are also translated as above,
except that the function call will have the string “interpreterProxy->”
prepended. Thus:

self frobosinateWith: a

is translated to

frobosinateWith(a);
and

interpreterProxy integerObjectOf: 17

is translated to

interpreterProxy->integerObjectOf(17);

 Builtin Message Sends
Certain messages are not translated in accordance with the preceding

rules, but rather to C-language expressions with semantics similar to the
corresponding Smalltalk operation:

&, |, and:, or:, not, +, -, *, /, //, \\, <<, >>, min:, max:,
bitAnd:, bitOr:, bitXor:, bitShift:, bitInvert32, raisedTo:
<, <=, =, >, >=, ~=, ==,~~

Other messages are also given special meanings, as described
below.

Arrays
The expression

foo at: exp

is translated to

foo[exp]

and the expression

foo at: exp1 put: exp2

is translated to

foo[exp1] = exp2

The messages basicAt: and basicAt:put: are translated in the
same way.

8

Extending the Squeak Virtual Machine

TPA#1573154.02

 Control Structures
The following Smalltalk “control structure messages” are translated

to C-language statements with similar semantics:

[stmtList] whileTrue: [stmtList2]
[stmtList] whileFalse: [stmtList2]
[stmtList] whileTrue
[stmtList] whileFalse
exp1 to: exp2: do: [stmtList]
exp1 to: exp2: by: exp3 do: [stmtList]
exp1 ifTrue: [stmtList]
exp1 ifFalse: [stmtList]
exp1 ifTrue: [stmtList] ifFalse: [stmtList]
exp1 ifFalse: [stmtList] ifTrue: [stmtList]
stmt1. stmt2

Note that the square brackets are used here for syntactic purposes
only in these control structures. Slang does not support Smalltalk code
blocks.

Methods
A method in Smalltalk will be translated to a C language function

returning an integer. If the method is declared in keyword form, the C
language function will be named by concatenating all of the keywords, but
without semicolons. Methods may be translated to be called directly as
primitives from Smalltalk, as described above, or may be translated to be
called as subroutines from C language code, as described below.
Temporary variables will be translated as local variables for the function.
Thus:

frobosinateWith: a andWith: b
| temp |
. . .Slang code . . .

will be translated as

int frobosinateWithandWith(int a, int b)
{

int temp;
. . . Translated C code …

}

If you should want the procedure to return a value with a type other
than int, you may use the directive

self returnTypeC: ‘char *’

C Language Declarations and Coercion of Expressions
Unless you specify otherwise, Slang will translate all method

temporaries into C variables defined as integer types. You can declare the
variables differently in translated code by using the Slang directive:

9

Extending the Squeak Virtual Machine

TPA#1573154.02

self var: #sPointer declareC: ‘char *sPointer’.

To satisfy C type checking semantics, it may be necessary to direct
Slang to coerce an expression from one type to another. This can be
accomplished with the Slang directive:

self cCoerce: aSmalltalkExpression to: ‘int’

Suppose the object at the top of the Smalltalk stack corresponded to an
Array of characters such as a Smalltalk instance of class String. You
might use the following Slang code to access its elements:

self var: #stringObj declareC: ‘int stringObj’.
self var: #stringPtr declareC: ‘char *stringPtr’.
self var: #stringSize declareC: ‘int stringSize’.
. . .
stringObj ← interpreterProxy stackValue: 0.
stringSize ← interpreterProxy stSizeOf: stringObj.
stringPtr ← self

cCoerce: (interpreterProxy arrayValueOf: stringObj)
to: ‘char *’.

Global Variables
Global variables for a plugin are declared in Smalltalk as instance

variables of the InterpreterPlugin subclass, and can be further declared
for purposes of C-language type definitions by adding a method named
declareCVarsIn: to the class side of the InterpreterPlugin
subclass. With global declarations, however, a string, rather than a symbol
is used as the parameter for the var: keyword. An example follows:

declareCVarsIn: cg
cg var: 'm23ResultX' declareC:'double m23ResultX'.
cg var: 'm23ResultY' declareC:'double m23ResultY'.
cg var: 'm23ArgX' declareC:'double m23ArgX'.
cg var: 'm23ArgY' declareC:'double m23ArgY'.

Subroutines
Subroutines are useful in most programming situations. Writing

named primitives is no different. For simplicity, many named primitive
functions serve only as the “glue” between Smalltalk and the operative
subroutines, merely reading and verifying the parameters from the stack and
data from the receiver. That information is then passed to the operative
subroutine, and returned to the glue primitive function, which clears and
then pushes the return value back onto the stack in accordance with the
linkage conventions.

You may call a Slang subroutine simply by sending the subroutine as a
message to the “special object” self, for example:

self subroutineOn: aFirstValue and: aSecondValue

and in turn, the subroutine might be coded as follows:

subroutineOn: aFirstParm and: aSecondParm

10

Extending the Squeak Virtual Machine

TPA#1573154.02

self var: #aFirstParm declareC: ‘char *’.
self var: #aSecondParm declareC: ‘float’.
self returnTypeC: ‘float’.
. . . Slang code for the subroutine . . .

No special linkage conventions need be followed for these internal
Slang subroutines. Those linkage conventions apply only to procedures
that will be directly called from Smalltalk using the “<primitive: . . .
module:> mechanism.

The Slang-to-C translator automatically inlines a subroutine if the
subroutine is either sufficiently short, or if it contains at or near the
beginning of its code a Slang inline: directive of the form:

self inline: true.

Certain subroutines, for example subroutines containing the cCode:
directive, will not be inlined even if the subroutine contains an inline:
directive

Inline C-Language Code
Any C-language expression may be inserted into translated code with the
expression

self cCode: ‘InternalMemorySystemSubroutine(foo)’

Of course, this code will not be executed in any way when the code is
being interpreted. However, when translated to C, the string will be
inserted verbatim, followed by a semicolon.

It is sometimes helpful, particularly when testing, to have certain
Smalltalk code executed during translation. For that reason, the expression

self cCode: ‘InternalMemorySystemsubroutine(foo)’
inSmalltalk: […Smalltalk code. . .]

will be translated as above, but when it is interpreted, the corresponding
Smalltalk code will be executed.

TestInterpreterPlugin
Squeak also provides a second, upwardly compatible, Slang subset
translator, the TestCodeGenerator. TestCodeGenerator is anticipated, in
time, to supplant the present Slang interpreter. The TestCodeGenerator
provides the same facilities as the translator described above, but also
provides means for automatically generating plugin linkage code, and to
greatly facilitate the writing of pluggable primitives.

To use the TestCodeGenerator, define the plugin class as a subclass of
TestInterpreterPlugin instead of InterpreterPlugin. A complete
description of TestCodeGenerator is beyond the scope of this article.
Although documentation is regrettably quite scant as this article is written,

11

Extending the Squeak Virtual Machine

TPA#1573154.02

more will be forthcoming in time. In the meanwhile, the following page
from the Squeak Swiki may be helpful:

http://minnow.cc.gatech.edu/squeak/850

The next section discusses in some depth the internal structure of
objects as they are represented in the Squeak Virtual Machine.

The Shape of a Smalltalk Object
In Smalltalk, everything is an object. Ultimately, however, objects

must be represented in hardware as bits and bytes. Unaided by the
abstractions of the Smalltalk model, primitives and the Squeak VM must
concern itself with this uncomfortable reality. To write primitives, a
programmer must know that the Squeak VM represents each and every
Smalltalk object with a 32-bit integer value, known as an oop. The internal
representations and interpretations of these oops, however, vary
substantially depending upon the object represented by the oop. It may be
helpful to consider four distinct categories, or “shapes,” of Squeak object
representations, and how they may be manipulated in Slang and C.

1. Smalltalk SmallInteger objects;

2. Other non-indexable Smalltalk objects;

3. Smalltalk objects indexable to oops;

4. Smalltalk objects indexable to data other than oops.

From a Smalltalk point of view, the first category is self-
explanatory. The second category includes, for example, instances of
classes Boolean, Fraction and Object, but also includes objects
that contain indexed objects as instance variables, but are not themselves
indexed, such as instances of classes Form and Set. The third category,
bjects indexable to oops, include instances of class Array. The last,
objects indexable to things other than oops, include objects indexable to
byte or word data, such as instances of classes
LargePositiveInteger, ByteArray and WordArray.

12

Extending the Squeak Virtual Machine

TPA#1573154.02

SmallInteger Objects
Primarily for efficiency reasons, Squeak represents 31-bit signed

integer values (Smalltalk SmallInteger objects) with an oop containing
that integer data. Oops representing other types of data are pointers to an
object “header” stored elsewhere in memory. Since all object headers begin
on word boundaries, these pointer oops are even numbers. Squeak exploits
this fact by representing SmallIntegers in odd-numbered oops.
SmallInteger Oops are therefore stored in the following format:

Bit Index 31 30 29 . . . 3 2 1 0

Data 31-bit SmallInteger Data 1

While every SmallInteger can be represented by a int-type C
variable, the converse is not true. C int variables containing values greater
than or equal to 230 or less than -230 will not “fit” into the 31 bits available
for SmallInteger data.

Converting between SmallInteger Oops and Values
The interpreter proxy provides two methods to help back and forth

between the oop representation of a SmallInteger and the actual numeric
value represented:

In Smalltalk: In C:
interpreterProxy integerObjectOf: value interpreterProxy->integerObjectOf(value)
interpreterProxy integerValueOf: oop interpreterProxy->integerValueOf(oop)

If the argument of integerValueOf: is an oop that represents a
SmallInteger object, the method will answer a signed C value
corresponding to the SmallInteger. The answer will otherwise be
undefined, even if the argument does represent an integer object, such as a
LargePositiveInteger. Conversely, if an argument to integerObjectOf
is within the range of values that can be represented by a SmallInteger,
then the method will answer with the corresponding SmallInteger oop.
If a SmallInteger cannot represent the value, then the result will be
undefined.

Testing For SmallInteger Oops and Values

The isIntegerValue: method answers a Boolean value reflecting
whether the argument can be converted into a SmallInteger object. That
is, whether the value is within the SmallInteger range. Conversely,
isIntegerObject: answers a Boolean value reflecting whether the
argument, treated as an oop, represents a SmallInteger.

interpreterProxy isIntegerObject: oop interpreterProxy->isIntegerObject(oop)

13

Extending the Squeak Virtual Machine

TPA#1573154.02

interpreterProxy isIntegerValue: value interpreterProxy->isIntegerValue(value)

Validating Conversion Function
The interpreter proxy provides a method for validating and loading

values that are expected to be SmallIntegers with a single call:

interpreterProxy interpreterProxy->
checkedIntegerValue: oop checkedIntegerValue (oop)

This method will check whether the oop is a SmallInteger value, and if
so, return the corresponding integer value. If the oop is not a
SmallInteger value, then the successFlag is set to false, and the result
will be undefined.

Long Integer Values Outside the SmallInteger Range
On occasion, it is useful to have an extension pass or return a full 32-

bit integer value. The interpreter proxy provides functions for manipulating
unsigned 32-bit values:

interpreterProxy interpreterProxy->
positive32BitIntegerFor: value positive32BitIntegerFor(value)

interpreterProxy interpreterProxy->
positive32BitValueOf: oop positive32BitValueOf(oop)

The positive32BitValueOf: method will accept either a
SmallInteger or a 4-byte LargePositiveInteger object and answer a
value that can be saved into and manipulated as an unsigned long integer.
The positive32BitIntegerFor: method will convert a value stored in
an unsigned long int C variable and return an oop for a corresponding
SmallInteger if the value is within the SmallInteger range, or will
return an oop for a LargePositiveInteger.2

Other Non-indexable Objects
All other oops are represented in the VM as pointers to internal data

structures containing further descriptions of the oop. The majority of
Smalltalk classes have this shape.

Objects Without Instance Variables
Some objects with non-indexable shape bear no other data than the

class of which they are a member. The only thing that a named primitive
can meaningfully do with the oop for such an object is to assign the value

2 Should a LargePositiveInteger oop be created during a call to

#positive32BitIntegerOf:, a garbage collection may occur, which in turn might invalidate
oops stored in other C variables. See the section below on Memory Management and
Garbage Collection.

14

Extending the Squeak Virtual Machine

TPA#1573154.02

to another oop instance “slot,” or to compare it with other oops. Oops for
some important special objects are provided by the interpreter:

In Smalltalk: In C:

interpreterProxy falseObject interpreterProxy->falseObject()
interpreterProxy nilObject interpreterProxy->nilObject()
interpreterProxy trueObject interpreterProxy->nilObject()

It is important to note that since the oop for Smalltalk true is likely to
be non-zero, it will test as true in a C-language if-statement. However, the
same is also true for the oop representing the Smalltalk object false.
Accordingly, to determine in C whether an oop represents Boolean truth,
one should instead code something like the following:

if (booleanOop == interpreterProxy->trueObject()) {. . .}

As an alternative, Smalltalk Boolean objects can be converted to and
from C-language Boolean values with the following operations:

interpreterProxy booleanValueOf: oop interpreterProxy->booleanValueOf(oop)

The booleanValueOf: method, like checkedIntegerValue:,
will first check that the oop represents an object of type Boolean, and will
set the successFlag to false if it does not. If the oop is valid, then the
method will answer a corresponding C-language Boolean value.

As with oops for true and false, the oop for Smalltalk nil will not
bear the same integer value as the C language constant NULL. The
following code:

if (oop == NULL) {. . .}

will not behave as expected, because the result of the C expression
is almost always likely to be false, regardless of whether oop actually
represents the Smalltalk object nil. To test in C whether an oop represents
nil, you should instead code something like the following:

if (oop == interpreterProxy->nilObject()) {. . . }

Objects With Named Instance Variables
The vast majority of Smalltalk Classes, however, define non-

indexable objects with one or more instance variables. These instance
variables are stored in numbered slots, beginning at 0. The slot numbers
correspond to the sequence in which those names are listed in the Class
definition. The interpreter proxy provides the following functions for
manipulating oops corresponding to objects with such a shape:

In Smalltalk: In C:

interpreterProxy interpreterProxy->

15

Extending the Squeak Virtual Machine

TPA#1573154.02

fetchWord: slot fetchWordofObject (slot,oop)
ofObject: oop

interpreterProxy interpreterProxy->
firstFixedField: oop firstFixedField(oop)

The value returned by fetchWord:ofObject: is an oop corresponding
to the object stored in the corresponding instance variable. The value
returned by firstFixedField: is a word-based pointer which can be
indexed to return a corresponding instance variable (or in Slang, a Word-
based CArrayAccesor). Thus,

p ← interpreterProxy firstFixedField:oop.
0 to: numInstVars do: [:i | self foo: (p at: i)]

int *p;
p = interpreterProxy->firstFixedField(oop);
for (i=0; i<numInstVars; i++) {foo(p[i]);}

will perform the function foo on oops for each instance variable in the object
represented by oop.

The interpreter proxy provides facilities for extracting the contents of an
instance variable from an object, type checking and, in the case of floats and
integers, converting the value at the same time.

interpreterProxy interpreterProxy->fetchIntegerofObject(

fetchInteger: slot slot,oop)

ofObject: oop

interpreterProxy interpreterProxy->

fetchPointer: slot fetchPointerofObject (slot, oop)

ofObject: oop:

As side effects, fetchInteger:ofObject: will fail unless the oop
corresponds to a SmallInteger, and fetchPointer:ofObject: will
fail if the oop corresponds to a SmallInteger.

For example, suppose rcvr contained an oop for an instance of a class
that defined as follows:

Object subclass: #Example
instanceVariableNames: 'instVar0 instVar1'
classVariableNames: ''
poolDictionaries: ''
category: 'Squeak-Plugins'.

Then, if instVar0 and instVar1 contains a ByteArray object and a
SmallInteger object, respectively, you can load the oop pointers to
those objects from rcvr as follows:

oop0 ← interpreterProxy fetchPointer: 0 ofObject: rcvr.

16

Extending the Squeak Virtual Machine

TPA#1573154.02

oop1 ← interpreterProxy fetchInteger: 1 ofObject: rcvr.

Finally, valid Smalltalk values can be stored in slots of an object using
the interpreter proxy methods:

interpreterProxy interpreterProxy->
storeInteger: slot storeIntegerofObjectwithValue
ofObject: oop (slot, oop, integerValue)
withValue: integerValue

interpreterProxy storePointer: interpreterProxy->
storePointer: slot storePointerofObjectwithValue
ofObject: oop (slot, oop, nonIntegerOop)
withValue: nonIntegerOop

With storeInteger:ofObject:withValue:, integerValue will be
converted to a SmallInteger oop and stored in the specified instance
variable (or fail if it cannot be converted). The other method does not
convert the oop (but will fail if nonIntegerOop is for a SmallInteger),
and stores the object in the specified instance variable.

Objects Indexable to Oops
In addition to named instance variables, objects may contain a

variable, indexable number of objects. A principle example is, of course,
Smalltalk class Array. Indexable objects may contain oops referring to
other Smalltalk objects, or they may contain raw numerical data as bytes or
words. Like non-indexable objects, objects that are indexable to Smalltalk
objects (but not objects indexable to data!) may also have any number of
named instance variables.

Extracting the Indexable Instance Variables
Given an oop, you can obtain the size of the corresponding object

(the value the object would answer if sent the message size) using the
following code:

interpreterProxy stSizeOf: varOop interpreterProxy->stSizeOf(varOop)

or, if you are only interested in the number of bytes consumed by the
variable portion of theobject, you may use:

interpreterProxy interpreterProxy->
byteSizeOf: varOop byteSizeOf(varOop).

Given an oop, you can then obtain or change the value of the oop of its
elements using:

interpreterProxy interpreterProxy->
stObject: varOop stObjectat(varOop, index)
at: index

interpreterProxy interpreterProxy ->
stObject: varOop stObjectatput(varOop,index,value)

17

Extending the Squeak Virtual Machine

TPA#1573154.02

at: index
put: value

You can obtain a C pointer to the first indexable oop stored in the
variable portion of the object with the following:

p ← self p = (int *) interpreterProxy->
cCoerce: (interpreterProxy firstIndexableField(oop)

firstIndexableField: oop)
to: ‘int *’

after which you can address (or change) individual oops by indexing the
array. Whether in Smalltalk or in C, all variable indexed objects referenced
through the interpreter proxy are 0-based. Since firstIndexableField:
answers objects of type ‘void *,” the result should be coerced to ‘int *’.

Extracting the Named Instance Variables
Objects indexable to oops may have named instance variables in addition to
the indexable instance variables. You can test for the presence of such
instance variables and manipulate them just as you would for non-indexable
instance variables.

Testing For Objects Indexable to Oops
You may test whether an object is indexable (variable) using:

interpreterProxy isIndexable: oop interpreterProxy->isIndexable(oop)

which will return true if the oop corresponds to any variable object
regardless of whether the object is indexable to oops, bytes or words, or by
using:

isPointers: oop

which will return true if and only if the oop corresponds to a variable object
indexable to oops.

An Example
The following code reverses, in situ, the order of the objects in the

variable Smalltalk object represented by oop.

a ← self cCoerce: (interpreterProxy firstIndexableField: oop) to: ‘int *’.
i ← 0. j ← (interpreterProxy stSizeOf: oop) - 1.
[i<j] whileTrueDo:
 [t ← a at: i. a at: i put: (a at:j). a at: j put: t. i ← i + 1. j ← j - 1].

Or in C:

a = (int *) interpreterProxy->firstIndexableField(oop);
i = 0; j = (interpreterProxy->stSizeOf(oop)) – 1;
while(i<j) {t = a[i]; a[i]=a[j]; a[j]=t; i++; j--;}

18

Extending the Squeak Virtual Machine

TPA#1573154.02

Objects Indexable to 1-Byte or 4-Byte Values
Smalltalk permits the creation of objects with indexable instance

variables containing binary data, each containing either a single byte or 4-
byte word, each referenced by indexing. Objects of this shape may not
contain named instance variable, and accordingly the methods described in
the section for named instance variables are inapplicable to such objects.

Unsurprisingly, Smalltalk internally represents the instance variable
data as an array of bytes or words. As with objects indexable to oops,
pointers to a variable byte or a variable word object’s array can be obtained
using firstIndexableField:. (In the case of variable byte objects, you
should coerce the result to ‘char *’ instead of to ‘int *’). Likewise, you can
obtain the size of such an object using stSizeOf: (noting that for word-
indexable objects, the message will answer the number of 4-byte words,
while for byte-indexable objects, the method will answer the number of
bytes in the object represented by the oop). If you desire the number of
bytes in the object, regardless of whether it is byte- or word- indexable, you
may use byteSizeOf: instead.

You can check the shape of an oop with the following functions:

interpreterProxy isBytes: oop interpreterProxy->isBytes(oop)
interpreterProxy isWords: oop interpreterProxy->isWords(oop)
interpreterProxy isWordsOrBytes: oop interpreterProxy->isWordsOrBytes(oop)

Finally, you can combine validation and conversion byte or word
objects in one step using:

interpreterProxy interpreterProxy->
fetchArray: index fetchArrayofObject(index,oop)
ofObject: oop

to extract an oop pointer from a named instance variable array, or

interpreterProxy arrayValueOf: oop interpreterProxy->arrayValueOf(oop)

to extract an oop pointer from any oop. Both methods will fail if the
specified oop is not either byte- or word- indexable, and will return a
pointer otherwise.

Special case of a Float
Floating point values, though in Smalltalk treated as scalar values,

are represented as a 64 bit value in the form of an indexable object
comprising two 32-bit words. The interpreter proxy converts oops
representing Float objects into C values of type double, and vice-versa, with
methods analogous to those used for SmallIntegers.

interpreterProxy interpreterProxy->
floatObjectOf: aFloat floatObjectOf(aFloat)

interpreterProxy interpreterProxy->floatValueOf(oop)
floatValueOf: oop

interpreterProxy interpreterProxy->
fetchFloat: fieldIndex fetchFloatofObject(fieldIndex,

19

Extending the Squeak Virtual Machine

TPA#1573154.02

ofObject: objectPointer objectPointer)
interpreterProxy

isFloatObject: oop interpreterProxy->isFloatObject(oop)

The Anatomy of a Named Primitive
Primitives are ordinarily invoked in the course of evaluating a

Smalltalk expression, when a receiver is sent a message that has been
defined as follows:

primitiveAccessorNameWith: object1 then: object2 andThen:
object3

<primitive: ‘primitiveName’ module: ‘ExtensionPluginName’>
“…
Smalltalk Code to be executed if the primitive fails or cannot be loaded
…”

Of course, the name of the method and the number and names of its
parameter may vary. When the message is sent, the oop for the receiver is
pushed upon a stack, each parameter is evaluated and pushed onto the stack
in the order they appear in the method’s definition. The VM global
successFlag is set to true. The stack then looks substantially as follows:

(top) 0 oop for object3
1 oop for object2
2 oop for object1

(bottom) 3 oop for receiver

If the module has not already been loaded, the Squeak VM will attempt
to “load” the named plugin, in this case ExtensionPluginName, in a manner
that will vary depending upon the operating system. Squeak then attempts
to find and execute the function setInterpreter, passing to that function
a pointer to the Squeak VM interpreter proxy. (The standard plugin code
saves this value in a global variable named interpreterProxy.) If this
process succeeds, Squeak will then attempt to locate the pointer for the
named primitive function, in this case, primitiveName. Should any
part of this process fail, the VM will cease attempting to load the extension,
and proceed by executing the Smalltalk code that followed the primitive
specification.

If all goes well, however, control is passed to the named primitive
function. If the primitive fails, that is, sets successFlag to false, the
primitive must leave the stack intact (or restore it) before returning. If the
primitive does not fail, then the primitive must pop the parameter and
receiver oops from the Smalltalk stack, and must then push a valid oop
thereon to serve as the return value.

This is among the most critical concerns when writing a
plugin, and the most common cause of unpredictable behavior.
The failure to comply with these linkage conventions can lead
to substantial undefined behavior and will likely freeze or
crash the Squeak VM.

20

Extending the Squeak Virtual Machine

TPA#1573154.02

When the primitive returns from execution, the interpreter will check
successFlag. If the primitive failed, then control is passed to the
corresponding Smalltalk code. Otherwise, the Smalltalk stack will be
popped once (and only once) to obtain an oop, which will in turn serve as
the answer for the primitive message send.

A primitive manipulates the Smalltalk stack (as distinct from the C
function and parameter stack) through the interpreter proxy, using the
functions described in the next section.

Primitive Access to the Interpreter Stack

The named primitive function may manipulate the stack using the
following functions:

interpreterProxy stackValue: offset interpreterProxy->stackValue(offset)
interpreterProxy pop: nItems interpreterProxy->pop(nItems)
interpreterProxy push: oop interpreterProxy->push(oop)

interpreterProxy interpreterProxy->popthenPush(nItems,oop)
pop: nItems
thenPush: oop

The method stackValue: offset answers the value on the Smalltalk
stack offset slots from the top. Accordingly,

oop ← interpreterProxy stackValue: 0.

returns the value at the top of the stack. The method pop: removes the top
nItems elements from the top of the Smalltalk stack, and answers the oop
for the last value so removed. Conversely, push: pushes its parameter
onto the Smalltalk stack. Method pop:thenPush: removes the nItems,
and then pushes the specified oop onto the stack.

Since the named primitive rarely knows at the outset whether it will
succeed or fail, it is uncommon for the primitive to pop values from the
stack, leaving them in place for a “hasty retreat” by a simple return upon
identifying a failure condition. The primitive is far more likely, therefore, to
use stackValue: rather than the pop-related routines to access its
parameters. The interpreter proxy provides various functions that facilitate
this process by, not only loading the oop at the specified location, but in a
single step also validating the shape of and converting the oop to C-friendly
values, the parameters and the receiver. They are:

interpreterProxy stackIntegerValue: offset interpreterProxy->stackIntegerValue(offset)
interpreterProxy stackObjectValue: offset interpreterProxy->stackObjectValue(offset)
interpreterProxy stackFloatValue: offset interpreterProxy->stackFloatValue(offset)

For variable objects or objects with instance variables important to the
primitive, the oop would be loaded using stackValue:, and then
validated or converted in turn. Finally, the proxy provides a mechanism to

21

Extending the Squeak Virtual Machine

TPA#1573154.02

ease conversion of the C-friendly values to oops and pushing the
corresponding oops onto the stack in a single step. They are:

interpreterProxy pushBool: cValue interpreterProxy->pushBool(cValue)
interpreterProxy pushFloat: cDouble interpreterProxy->pushFloat(cDouble)
interpreterProxy pushInteger: intValue interpreterProxy->pushInteger(intValue)

Miscellaneous Plugin Tricks
The interpreter proxy provides a number of additional features

useful for developing primitive plugins.

Success and failure of a plugin
The following routines are useful for establishing the failure of a

primitive:

interpreterProxy failed interpreterProxy->failed()
interpreterProxy primitiveFail interpreterProxy->primitiveFail()
interpreterProxy success: aBoolean interpreterProxy->success(aBoolean)

The first, failed returns true whenever the primitive has failed.
primitiveFail establishes that the primitive has failed. success:
establishes that the primitive has failed if the Boolean expression is false,
and does not change the status otherwise.

Strict Type Checking
It is desirable from time to time to verify if a parameter or receiver is of

a specific Class, rather than merely to confirm its Smalltalk shape. To
determine if an oop represents an object that is an instance of a particular
class, use

interpreterProxy interpreterProxy->isMemberOf(oop,aString)
is: oop
MemberOf: aString

To determine if an oop represents an object that is either an instance of a
particular class or one of its subclasses, use:

interpreterProxy interpreterProxy->isKindOf(oop, aString)
is: oop
KindOf: aString

Determining the number of instance variables
Slang does not provide a method for determining directly the

number of instance variables. It does provide a method for determining the
total number of Smalltalk instance slots in an object:

interpreterProxy slotSizeOf: oop interpreterProxy->slotSizeOf(oop)

For non-variable objects, slotSizeOf: will return the total number of
named instance variables. For variable objects, however, slotSizeOf:
returns the number of named instance variables plus the number of

22

Extending the Squeak Virtual Machine

TPA#1573154.02

indexable variables. Accordingly, for variable objects, the number of
named instance variables is given by:

(interpreterProxy slotSizeOf: oop) – (interpreterProxy sizeOf: oop)

interpreterProxy->slotSizeOf(oop) – interpreterProxy->sizeOf(oop)

Some care must be taken in using this expression, because sizeOf is
not defined for most non-variable objects.

Instantiating Objects Inside a Plugin

Since SmallInteger objects require no memory other than the
oop itself, they can be created, so to speak, on the fly. All other objects
require the allocation of memory. While it is typically preferable to allocate
objects used in a primitive in Smalltalk with a wrapper around the calling
procedure, it is sometimes convenient or necessary to do so inside the
primitive. The interpreter proxy provides routines for doing so. Given an
oop representing a class, you can instantiate an object of that class and
obtain an oop pointing to its object header as follows:

interpreterProxy interpreterProxy->
instantiateClass: classPointer instantiateClassindexableSize(
indexableSize: size classPointer,size);

This operation does not execute initialization code typically associated
with the object class, however. It merely allocates the space and initializes
all instance variables to nil, akin to the Object>>basicNew method. To
assure that an object is properly initialized, you might instead use:

interpreterProxy->clone(prototype) interpreterProxy->clone(prototype);

which will perform a shallow copy of the object referred to by the prototype
oop, as though the clone message were sent to the object.

It is fairly straightforward to obtain an oop for a class inside a plugin.
At the outset, you can pass the class as a parameter to the function.
Alternatively, given an oop, you can obtain the oop for its class using:

interpreterProxy fetchClassOf: oop interpreterProxy->fetchClassOf(oop);

Alternatively, you can directly obtain the oop for certain fixed classes
using any of the following messages:

classArray classLargePositiveInteger
classBitmap classPoint
classByteArray classSemaphore
classCharacter classSmallInteger
classFloat classString

Finally, the interpreterProxy provides a special-purpose function to
facilitate the creation of objects of class Point.

interpreterProxy interpreterProxy->

23

Extending the Squeak Virtual Machine

TPA#1573154.02

makePointwithxValue: xValue makePointwithxValueyValue(
yValue: yValue xValue, yValue);

Memory Management and Garbage Collection
Garbage collection can be provoked from a primitive using the

following functions:

interpreterProxy fullGC interpreterProxy->fullGC();
interpreterProxy incrementalGC interpreterProxy->incrementalGC();

which are analogous to the similarly named methods of class
SystemDictionary. However, garbage collection can also occur
whenever a new object is instantiated, either through the express
instantiation above, or by using a method that can indirectly create a non-
SmallInteger object, such as positive32BitIntegerOf:

When that occurs, any oop other than a SmallInteger oop stored in
a C variable is invalidated and must be “reloaded,” for example by obtaining
new pointers from the stack or receiver. However, not all oops can be
reloaded in this way, for example oops that were created by explicit
instantiation.

To preserve oops across operations that can cause a garbage collection,
the interpreterProxy provides a special remappable oop stack, which will
hold references to oops which will be remapped during a garbage collection,
so that the oop can later be reloaded. Functions are provided for pushing
and popping values from the stack:

interpreterProxy popRemappableOop interpreterProxy->popRemappableOop()
interpreterProxy pushRemappableOop: oop interpreterProxy->

pushRemappableOop(oop);

For example, if temporaries or globals oop1 and oop2 held oop
references to objects, the following Slang code would safely preserve the
validity of the objects across a garbage collection.

interpreterProxy pushRemappableOop: oop1;
interpreterProxy pushRemappableOop: oop2;
. . . Smalltalk code that might result in a garbage collection . . .
oop2 ← interpreterProxy popRemappableOop;
oop1 ← interpreterProxy popRemappableOop;
. . . references to oop1 and oop2 . . .

Callbacks
One of the great weaknesses in the Squeak VM memory model is

that the interpreter cannot readily be called from a C-language function.
Accordingly, applications requiring callbacks are somewhat difficult to
implement. A limited callback capacity can be approximated using the
interpreterProxy method:

interpreterProxy interpreterProxy->
signalSemaphoreWithIndex: signalSemaphoreWithIndex(

semaIndex semaIndex);

24

Extending the Squeak Virtual Machine

TPA#1573154.02

Calling this method sends a signal to a Semaphore that had been
registered using the Smalltalk>>registerExternalObject:.method.3 The
callback is set up by: (i) forking a process which waits on the Semaphore
before calling the callback code, (ii) registering the Semaphore with the VM.
Signaling the Semaphore from a C language routine using the interpreter
Proxy can thereafter trigger the callback.

A Plugin for Swapping Blocks in a Word Processor

The Need for Speed
Programmers often need to move a blocks of data from one location

in a data structure to another. For example, a user of a word processor may
wish to move a block of text from one location to another, for example:

1. These
2. Lines
3. Out
4. Of
5. Should
6. Not
7. Be
8. Order

A user might wish to move lines 3 and 4 after line 7, to form the sentence
“These Lines Should Not Be Out Of Order.” This problem might be
described another way, as the problem of “swapping” two unequally sized
blocks of words, that is, swapping the two-word block {Out Of} with the
three-word block {Should Not Be}. There are many ways to address this

3 The #signalSemaphoreWithIndex: method does not immediately send the signal,

but registers a request for the signal with the VM. The VM will send the signal shortly
after the primitive returns control to the VM.

25

Extending the Squeak Virtual Machine

TPA#1573154.02

problem. For example, data structures such as linked lists can facilitate a
speedy implementation of this operation.

If we are constrained, for whatever reason, to chose a more compact
data structure, say a contiguous array of pointers to objects or an array of
ASCII bytecodes, the problem becomes somewhat more interesting. A
solution attributed to the authors of the TECO text editor is to reverse
unequal portions of the string “These Lines Out Of Should Not Be Order”
by performing the steps of:

1. reversing the elements of the first block in place;

yielding: “These Lines fO tuO Should Not Be Order”

2. reversing the elements of the second block in place;

yielding: “These Lines fO tuO eB toN dluohS Order”and

3. reversing the elements of the first and second blocks, taken
together;

yielding: “These Lines Should Not Be Out Of Order.”

This approach reduces the problem of swapping unequal blocks to the
problem of reversing blocks in place. We might code this approach in
Smalltalk by extending OrderedCollection with the following
methods:

swapBlockFrom: firstFrom withBlockFrom: secondFrom to: last
“Modify me so that my elements from the block beginning with index, firstFrom, up to
but not including the index, secondFrom –1, are swapped with the block beginning with
index, secondFrom, up to and including the index, last. Answer self.”

self reverseInPlaceFrom: firstFrom to: secondFrom-1.
self reverseInPlaceFrom: secondFrom to: last.
self reverseInPlaceFrom: firstFrom to: last

reverseInPlaceFrom: from to: to
“Modify me so that my elements from the index, from, up to and including the index, to,
are reversed. Assume that I am mutable. Answer self.”

| temp |
0 to: to - from // 2 do:

[:index |
 temp ← self at: from + index.
 self at: from + index put: (self at: to-index).
 self at: to-index put: temp]

These methods work with all mutable subclasses of
OrderedCollection, for example class Array. Executing the following
DoIt:

#(this collection out of should not be order)

swapBlockFrom: 3 withBlockFrom: 5 to: 8

which will answer:

26

Extending the Squeak Virtual Machine

TPA#1573154.02

(this collection should not be out of order)

These methods appear to work well and are general enough to handle
all forms of OrderedCollection. However, the code can be noticeably
slow when the blocks grow large. Consider a word processor maintaining
documents as an Array of objects, each object representing one line. A line
object might be an actual String of text in memory; an object representing a
proxy to a file or intermediate file in which the text can be found; or some
other object of relevance to the program.

Using that representation, one might implement both block moves and
line insertions with swapBlockFrom:withBlockFrom:to:.
However, for reasonably large files (about 100,000 lines or so), an
insertion could take seconds to execute. In an interactive program, such a
perceptible pause for a common operation could be intolerably slow. While
many alternatives should be weighed to speedily perform this operation, a
pluggable primitive is one that may save the day.

Step One: Designing the Interface
Before writing a primitive, it is useful to consider how it will be called.

Doing so permits you to better understand the requirements and
assumptions under which the primitive can be written. Since the document
is represented as an Array of objects, we will consider overriding
Array>>reverseInPlaceFrom:to:4 with a primitive. We start by subclassing
InterpreterPlugin to hold the plugin and primitive method:

InterpreterPlugin subclass: #FlipCollectionPlugin
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'VMConstruction-Plugins'

We then create a stub method in FlipCollectionPlugin, named
primReverseFromto, and add a primitive interface to class Array:

primitiveReverseFrom: from to: to

(1) <primitive: 'primReverseFromto' module: 'FlipCollectionPlugin'>
(2) ^FlipCollectionPlugin doPrimitive: 'primReverseFromto'

Line (1) identifies the primitive to be called, and the module name
expected. If the primitive executes properly, the return value (the value at
the top of the stack upon completion) will be answered. If either: (a) the
module cannot be loaded; (b) the primitive cannot be found in the module;
or (c) the primitive failed when executed, then Line (2) will be executed.
Line (2) sets up an environment to simulate in Smalltalk the primitive

4 While it may be obvious in this case that the block move spends most of its time

in the reverseInPlaceFrom:to: method, this is not always apparent in general. Squeak
provides excellent tools for profiling performance, for example MessageTalley, and
these measurements will often inform the question how a plugin should be designed.

27

Extending the Squeak Virtual Machine

TPA#1573154.02

execution, and executes it. The result of that simulation will be returned as
the answer to the primitive.

We can then override reverseFrom:to: in class Array with a call to the
primitive:

Array>>reverseFrom: from to: to

^self primitiveReverseFrom: from to: to

This completes the interface. We are now ready to build our
primitive.

Step Two: Coding the Primitive
As discussed above, the primitive will be a parameterless method, which in
this case we will call primReverseFromto.

primReverseFromto

| from to rcvrOop rcvr t |

(0) self export: true.
(1) self var: #rcvr declareC: 'int *rcvr'.

(2) to ← interpreterProxy stackIntegerValue: 0.
from ← interpreterProxy stackIntegerValue: 1.

(3) rcvrOop ← interpreterProxy stackObjectValue: 2.

(4) rcvr ← self
cCoerce: (interpreterProxy firstIndexableField: rcvrOop)
to: 'int *'.

(5) interpreterProxy success: (from >= 1 and: [from+1 <= to]).
interpreterProxy success: (to <= (interpreterProxy stSizeOf: rcvrOop)).

(6) interpreterProxy failed ifTrue: [^nil].

(7) rcvr ← rcvr - 1. "adjust for 1-based indexing."

(8) 0 to: to-from/2 do:
[:index |
 t ← rcvr at: from + index.
 rcvr at: from + index put: (rcvr at: to-index).
 rcvr at: to-index put: t].

(9) interpreterProxy pop: 3 thenPush: rcvrOop

A brief discussion follows:

28

Extending the Squeak Virtual Machine

TPA#1573154.02

Line (0) assures that a C language function generated from this
method will be an exported public reference. All primitives should have this
declaration.

Line (1) assures that the C language variable associated with the
Smalltalk temp rcvr will be declared as a pointer to integers. The default is
type int.

Lines (2) load the parameters from the stack into temporaries. As
you will recall, a method call first pushes the receiver onto the stack,
followed by the parameters in ascending order. Thus, parameter to will be
at the top (index 0) of the stack, followed by parameter from and the
receiver.

Line (3) loads the oop for the receiver (an array of objects) into temp
rcvrOop.

Line (4) loads rcvr with a pointer to a “void *” pointer to the first
indexable address of rcvrOop, and coerces the result to “int *”.

Line (5) performs some bounds checking, resetting the success flag
on a bounds failure.

Line (6) checks the success flag. Upon failure, the stack is left as-
is, so that the primitive’s alternative code can be executed.

Line (7) adjusts rcvr for 1-based indexing. C-language arrays are 0-
based, so by adjusting the pointer, subsequent references may treat the array
as though it were a 1-based Smalltalk array.

Lines (8) perform the actual work. This is the same code set forth in
the example code for OrderedCollection>>reverseFrom:to:, except
that self is replaced with rcvr. (Without line 7, the code would have to be
modified for C’s 0-indexed arrays.)

Line (9) pops the parameters and receiver oops from the stack, and
pushes back an oop representing the receiver. (Since we wish to return the
rcvr, a simple pop: 2 would have sufficed.)

Step 3: Building the Plugin
Having coded the primitive, we can directly test this code, albeit in

slow-motion, using the plugin interpreter. Because the plugin is not
installed, the primitive call in primReverseInPlaceFromto will fail,
and call the interpreter. In this way, you can test most plugin code without
actually compiling and installing the plugin.

Once we are satisfied that the code is working correctly, we can
build the plugin. The following doIt will generate a C-language file
corresponding to the plugin:

FlipCollectionPlugin translate

The generated file can then be compiled, using native system tools, as a
shared library, and installed as a plugin for testing as live system code,
resulting in a substantial and measurable speedup in the block move
routines.

29

Extending the Squeak Virtual Machine

TPA#1573154.02

Sample Table of Contents

WHY EXTEND SQUEAK? ..1

SQUEAKING OUT MORE SPEED...1
ROARING LIKE A MOUSE: NEW POWER AND FUNCTIONALITY. ..2
ANATOMY OF AN EXTENSION ...3

SPEAKING SLANG..4

A FIRST PLUGIN..4
THE PRIMITIVE FUNCTION...4
THE SMALLTALK INTERFACE...5
TRANSLATING AND BUILDING THE PLUGIN...5
SLANG: A BRIEF SUMMARY..6
EXPRESSIONS..6
UNARY MESSAGE SENDS ..6
BINARY MESSAGE SENDS..6
KEYWORD MESSAGE SENDS..6
MESSAGE SENDS TO SELF OR TO INTERPRETERPROXY..7
BUILTIN MESSAGE SENDS ...7
ARRAYS ...7
CONTROL STRUCTURES...8
METHODS ...8
C LANGUAGE DECLARATIONS AND COERCION OF EXPRESSIONS ..8
GLOBAL VARIABLES ..9
SUBROUTINES..9
INLINE C-LANGUAGE CODE...10

THE SHAPE OF A SMALLTALK OBJECT..11

SMALLINTEGER OBJECTS..12
CONVERTING BETWEEN SMALLINTEGER OOPS AND VALUES..12
TESTING FOR SMALLINTEGER OOPS AND VALUES ...12
VALIDATING CONVERSION FUNCTION...13
LONG INTEGER VALUES OUTSIDE THE SMALLINTEGER RANGE ..13
OTHER NON-INDEXABLE OBJECTS...13
OBJECTS WITHOUT INSTANCE VARIABLES ..13
OBJECTS WITH NAMED INSTANCE VARIABLES ..14
OBJECTS INDEXABLE TO OOPS...16
EXTRACTING THE INDEXABLE INSTANCE VARIABLES..16
EXTRACTING THE NAMED INSTANCE VARIABLES...17
TESTING FOR OBJECTS INDEXABLE TO OOPS...17
AN EXAMPLE ..17
OBJECTS INDEXABLE TO 1-BYTE OR 4-BYTE VALUES...18
SPECIAL CASE OF A FLOAT...18

THE ANATOMY OF A NAMED PRIMITIVE...19

PRIMITIVE ACCESS TO THE INTERPRETER STACK...20
MISCELLANEOUS PLUGIN TRICKS..21

30

Extending the Squeak Virtual Machine

TPA#1573154.02

SUCCESS AND FAILURE OF A PLUGIN ...21
STRICT TYPE CHECKING ...21
DETERMINING THE NUMBER OF INSTANCE VARIABLES...21
INSTANTIATING OBJECTS INSIDE A PLUGIN..22
MEMORY MANAGEMENT AND GARBAGE COLLECTION..23
CALLBACKS ..23

THE MECHANICS OF BUILDING A PLUGIN.....ERROR! BOOKMARK NOT DEFINED.

THE NEED FOR SPEED: SWAPPING BLOCKS IN A WORD PROCESSOR24
STEP ONE: DESIGNING THE INTERFACE ...26
STEP TWO: CODING THE PRIMITIVE...27
STEP 3: BUILDING THE PLUGIN...28

SAMPLE TABLE OF CONTENTS ...29

SAMPLE INDEX ..30

Sample Index

C
ChapterTitle, 1

F
Figure, 1
figures, 1
First, 1, 2

H
Heading, 1

I
Index term, 2

M
MethodCode, 2

N
Normal, 1

P
Picture, 1

S
System, 3

W
WorkspaceCode, 2

31

Extending the Squeak Virtual Machine

TPA#1573154.02

